

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

STANDARDS INTEROPERABILITY: APPLICATION OF
CONTEMPORARY SOFTWARE SAFETY ASSURANCE

STANDARDS TO THE EVOLUTION OF LEGACY
SOFTWARE

by

Desmond J. Meacham

March 2006

Thesis Advisor: James B. Michael
Second Reader: Jeffrey M. Voas

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
March 2006

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: Standards Interoperability: Application of
Contemporary Software Assurance Standards to the Evolution of Legacy
Software
6. AUTHOR(S) Desmond J. Meacham

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
The views expressed in this thesis are those of the author and do not reflect the official policy or position of the
Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
This thesis addresses software evolution from the perspective of standards interoperability. We address

the issue of how to apply contemporary software safety assurance standards to legacy safety-critical systems, with
the aim of re-certifying the legacy systems to the contemporary standards. The application of RTCA DO-178B
‘Software Considerations in Airborne Systems and Equipment Certification’ to modified legacy software is the
primary focus of this thesis. We present a model to capture the relationships between pre- and post-modification
software and standards. The proposed formal model is then applied to the requirements for RTCA DO-178B and
MIL-STD-498 as representative examples of contemporary and legacy software standards. The results provide
guidance on how to achieve airworthiness certification for modified legacy software, whilst maximizing the use of
software products from the previous development.

15. NUMBER OF
PAGES

99

14. SUBJECT TERMS
Airworthiness, Legacy Software, MIL-STD-498, RTCA DO-178B, Software Assurance,
Software Certification, Software Evolution, Standards Interoperability, Software Reuse,
Abstract Algebra 16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

STANDARDS INTEROPERABILITY: APPLICATION OF CONTEMPORARY
SOFTWARE ASSURANCE STANDARDS TO THE EVOLUTION OF LEGACY

SOFTWARE

Desmond J. Meacham
Flight Lieutenant, Royal Australian Air Force

B.ENG., University of Newcastle, Australia, 2000

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN SOFTWARE ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
March 2006

Author: Desmond J. Meacham

Approved by: Prof. James B. Michael

Thesis Advisor

Dr. Jeffrey M. Voas, SAIC Inc.
Second Reader

Prof. Peter J. Denning
Chairman, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

This thesis addresses software evolution from the perspective of standards

interoperability. We address the issue of how to apply contemporary software safety

assurance standards to legacy safety-critical systems, with the aim of recertifying the

legacy systems to the contemporary standards. The application of RTCA DO-178B

‘Software Considerations in Airborne Systems and Equipment Certification’ to modified

legacy software is the primary focus of this thesis. We present a model to capture the

relationships between pre- and post-modification software and standards. The proposed

formal model is then applied to the requirements for RTCA DO-178B and MIL-STD-498

as representative examples of contemporary and legacy software standards. The results

provide guidance on how to achieve airworthiness certification for modified legacy

software, whilst maximizing the use of software products from the previous development.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. EVOLUTIONARY DEVELOPMENT OF AIRCRAFT AND

AEROSPACE SOFTWARE...1
B. SAFETY-CRITICAL SOFTWARE CERTIFICATION.............................4
C. UNDERLYING CONCEPTS AND DEFINITIONS6

1. Legacy Software ...6
2. Software Safety within System Safety..6
3. Software Assurance ...8
4. Mission Hazards...9

II. SAFETY-CRITICAL SOFTWARE STANDARDS ...11
A. EXAMPLES FROM THE AEROSPACE DOMAIN.................................11
B. EXAMPLES FROM OTHER DOMAINS ..11
C. RTCA DO-178B – SOFTWARE CONSIDERATIONS IN

AIRBORNE SYSTEMS AND EQUIPMENT CERTIFICATION12
1. DO-178B Fault Condition Categories and Safety Levels for

Software ..12
2. DO-178B Objectives, Activities, Considerations and Evidence.....13
3. Circumstances for the Application of DO-178B14

D. MIL-STD-498 – SOFTWARE DEVELOPMENT AND
DOCUMENTATION...15
1. Background and Scope of MIL-STD-498 ..15
2. MIL-STD-498 Process and Product Requirements16
3. MIL-STD-498 and Safety Requirements ...18
4. MIL-STD-498 Software Product Evaluation and Quality

Assurance..19

III. SOFTWARE EVOLUTION, CERTIFICATION AND THE
RELATIONSHIP WITH SOFTWARE STANDARDS ...21
A. SOFTWARE EVOLUTION AS REENGINEERING................................21
B. SOFTWARE PRODUCT VERIFICATION...22
C. SOFTWARE EVOLUTION AND CERTIFICATION..............................23

1. Using Deductive Logical for Software Certification.......................23
2. Establishing the Safety Level Assessment..24
3. Carrying Out Software Evolution ..25
4. Achieving Airworthiness Certification ..25

D. SOFTWARE EVOLUTION AND STANDARDS25
E. ABSTRACT ALGEBRA AND MORPHISMS ...28
F. ABSTRACT ALGEBRA AND SOFTWARE DEVELOPMENT29
G. ABSTRACT ALGEBRA AND SOFTWARE EVOLUTION....................32
H. APPLICATION OF MORPHISM TO SOFTWARE EVOLUTION.......33

1. Previous Software Development...35

 viii

2. Software Modification ...36
3. Software Product Morphism ..38

a. Code Traceability ..39
b. Software Testing..42
c. General Considerations for Software Product Morphism.....44

IV. RELATED WORK ..45
A. ARCHITECTURAL TRANSFORMATION ..45

1. Hierarchical Typed Hypergraphs ..45
2. Unified Modeling Language for Real-Time.....................................46
3. Hierarchical Typed Hypergraphs Transformations.......................46
4. Evaluation of Quality Characteristics..48

B. COMPUTER-AIDED SOFTWARE EVOLUTION...................................48
C. F/RF-111C AGM-142E/1760 INTEGRATION...50

V. CONCLUSION ..53
A. KEY FINDINGS AND ACCOMPLISHMENTS..53
B. CONCLUDING REMARKS ..55
C. FUTURE WORK...56

1. Determine the Morphisms Required for Activities and
Products ..56

2. Case Studies..56
3. Automation ...56
4. Different Combinations of Other Standards...................................56
5. Application to Other Domains and Dimensions..............................57
6. Cost-Benefit Analysis With Respect to Software/System Age57

APPENDIX: EXTRACTS FROM SELECTED STANDARDS..59
A. EXTRACTS FROM RTCA DO-178B ...59
B. EXTRACTS FROM MIL-STD-498 ...68
C. EXTRACT FROM DATA ITEM DESCRIPTION DI-IPSC-81433

(SOFTWARE REQUIREMENTS SPECIFICATION)69

LIST OF REFERENCES..71

INITIAL DISTRIBUTION LIST ...73

 ix

LIST OF FIGURES

Figure 1. Model for Software Reengineering (From: [1])...21
Figure 2 Verification Techniques (From: [25])..23
Figure 3. Software Evolution and Standards Relationship..26
Figure 4. Metaclass Mapping of HTH and UML-RT Elements (From: [28])46
Figure 5. Hypergraph Graphical T-Notation (From: [28])..47
Figure 6. Relational Hypergraph (From: [29]) ..49
Figure 7. AGM-142E Integration – Simplified Block Diagram51

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1. RTCA DO-178B Safety Categories and Software Levels...............................13
Table 2. Breakdown of Objectives by Lifecycle Process and Safety Level14
Table 3. Modified Code Traceability...40
Table 4. Objectives, Activities, Outputs and Data Control Categories (After: 15,

Tables A-1 through A-10)..68

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF EQUATIONS

Equation 1. Software Evolution ..27
Equation 2. Homomorphism Example – Logarithms..29
Equation 3. Single Product Development ...30
Equation 4. Single Product Development – Code Example..30
Equation 5. Single Activity ...31
Equation 6. Single Activity – Coding Example ..32
Equation 7. Software Development...32
Equation 8. Software Evolution ..33
Equation 9. Identity Morphism ...34
Equation 10. Partial Morphism ...34
Equation 11. Null Morphism...34
Equation 12. Code Traceability...35
Equation 13. Software Testing ..36
Equation 14. Software Coding – Modification ...37
Equation 15. Software Code Evolution...37
Equation 16. Code Traceability – Modification..37
Equation 17. Software Traceability Evolution ..37
Equation 18. Software Testing – Modification ...38
Equation 19. Software Test Results Evolution..38
Equation 20. Software Configuration Management (CM) Data Evolution...........................38
Equation 21. Software Trouble Reports Evolution ...38
Equation 22. Identity Morphism – Code Traceability...41
Equation 23. Partial Morphism – Design Element ‘B’ Code Traceability............................41
Equation 24. Null Morphism – Code Traceability ..41
Equation 25 Null Morphism –Test Logs and Results ..43
Equation 26. Partial Morphism – Design Element ‘D’ Test Logs and Results.....................43

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

LIST OF ABBREVIATIONS, ACRONYMS, AND SYMBOLS

Term Definition

ADF Australian Defence Force
ANSI American National Standards Institute
ARP Aerospace Recommended Practice
CM Configuration Management
COM Computer Operation Manual
COTS Commercial off the shelf
CPM Computer Programming Manual
CSCI Computer Software Configuration Item
DBDD Database Design Description
DEF STAN Defence Standard (UK)
DID Data Item Description
ECSS European Cooperation for Space Standardization
EUROCAE European Organisation for Civil Aviation Equipment
F Fighter
F/A Fighter/Attack
FAA Federal Aviation Administration
FSM Firmware Support Manual
HTH Hierarchical Typed Hypergraph
IAW In accordance with
IDD Interface Design Description
IEC International Electrotechnical Commission
IEEE Institute of Electrical and Electronic Engineers
IRS Interface Requirements Specification
ISO International Organization for Standardization
JHMCS Joint Helmet Mounted Cueing System
JSSSC Joint Software System Safety Committee

MC Mission Computer
MIL-HDBK Military Handbook (U.S.)

 xvi

Term Definition

MIL-STD Military Standard (U.S.)
MISRA Motor Industry Software Reliability Association
MoD Ministry of Defence
NASA National Aeronautics and Space Administration
OCD Operational Concept Description
OFP Operational Flight Programs
PSAC Plan for Software Aspects of Certification
RAAF Royal Australian Air Force
ROI Return On Investment
RTCA Radio Technical Commission for Aeronautics
S/W, Sw Software
SAE Society of Automotive Engineers
SCMP Software Configuration Management Plan
SCOM Software Center Operator Manual
SCS Software Configuration Set
SDD Software Design Description
SDP Software Development Plan
SIOM Software Input/Output Manual
SIP Software Installation Plan
SLOC Source lines of code
SMP Stores Management Processor
SPS Software Product Specification
SQA Software Quality Assurance
SQAP Software Quality Assurance Plan
SRS Software Requirements Specification
SSDD System/Subsystem Design Description
SSS System/Subsystem Specification
Std Standard
STD Software Test Description
STP Software Test Plan
STR Software Test Report

 xvii

Term Definition

STrP Software Transition Plan
SUM Software User Manual
SVD Software Version Description
SVP Software Verification Plan (DO-178B)
TAR Technical Airworthiness Regulator (ADF)
TR Technical Report
UK United Kingdom of Great Britain and Northern Ireland
UML-RT Unified Modeling Language for Real-Time
U.S. United States of America
USMC United States Marine Corps
USN United States Navy
Α (Alpha) Set of all possible symbols defined for a given algebra
Ax Superset of software products for version X
BS, CS Subset of software products of Ax
Rx Relationship ‘x’ (between software and/or standard)
Sx Software standard ‘x’
Xn nth version of software X

rα A single software product

φ Morphism function

Sω A single software development activity

Ω Set of all possible operators defined for a given algebra
→ Produces

 Set of all real numbers
+ Set of all positive real numbers

∅ Null set
∪ Set union

⊂ Subset

1

n

s=
∪ Union of n sets

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

 xix

LIST OF SAFETY AND SOFTWARE STANDARDS
AND GUIDELINES

Designation Status Title

ANSI/IEEE Std 730 2002 Standard for Software Quality Assurance Plans
MoD Def Stan 00-54 Superseded Requirements for Safety Related Electronic

Hardware in Defence Equipment (UK)
MoD Def Stan 00-55 Superseded Requirements for Safety Related Software in

Defence Equipment (UK)
MoD Def Stan 00-56 Interim

Issue 3
Safety Management Requirements for Defence
Systems (UK)

MoD Def Stan 00-58 Superseded HAZOP Studies on Systems Containing
Programmable Electronics (UK)

DEF(AUST) 5679 1998 The Procurement of Computer-Based Safety Critical
Systems

DI(AF) AAP 7001.054 2004 Airworthiness Design Requirements Manual
EN 50126 1999 Railway Applications – The Specification and

Demonstration of Reliability, Availability,
Maintainability and Safety

EN 50128 2001 Software for Railway Control and Protection
Systems

FAA Order 8110.49 2003 Software Approval Guidelines (U.S.)
H ProgSäkE 2001 Handbook for Software in Safety Critical

Applications (Sweden)
H SystSäkE System Safety Activities for Defense Systems

(Sweden)
IEC 60880 1986 Software for Computers in the Safety Systems of

Nuclear Power Stations
IEC 60880-2 2000 Software for Computers Important to Safety for

Nuclear Power Plants - Part 2: Software Aspects of
Defence Against Common Cause Failures, use of
Software Tools and of Pre-Developed Software

IEC 61508 1998 Functional Safety of
Electrical/Electronic/Programmable Electronic
Safety-Related Systems

IEEE Std 829 1998 Standard for Software Test Documentation
IEEE Std 1012 2004 Standard for Software Verification and Validation
IEEE Std 1028 1997 Standard for Software Reviews

 xx

Designation Status Title

IEEE Std 1228 1994 Standard for Software Safety Plans
IEEE Std 1298 1992 Software Quality Management System
IEEE/EIA 12207 1996/97 Industry Implementation of ISO/IEC 12207-1995

Information Technology – Software Life Cycle
Processes

ISO 9000-3 1997 Quality Management and Quality Assurance
Standards – Guidelines for the Application of ISO
9001:1994 to the Development, Supply, and
Maintenance of Computer Software

ISO/IEC 15026 1998 Information technology – System and software
integrity levels

ISO/IEC TR 15942 2000 Information Technology – Programming languages
– Guide for the Use of the Ada Programming
Language in High Integrity Systems

JSSSC SSSH 1999 Software System Safety Handbook (U.S.)
MIL-HDBK-286 A Guide for DOD-STD-2168 (U.S.)
MIL-STD-2167A Cancelled Defense System Software Development (U.S.)
MIL-STD-498 1994 Software Development and Documentation (U.S.)
MIL-STD-882C Superseded System Safety Program Requirements (U.S.)
MIL-STD-882D 2000 Standard Practice for System Safety (U.S.)
RTCA DO-178B
EUROCAE ED-12B

1992 Software Considerations in Airborne Systems and
Equipment Certification

RTCA DO-248B
EUROCAE ED-94B

2001 Final Report for Clarification of DO-178B
“Software Considerations in Airborne Systems and
Equipment Certification”

SAE ARP 4754 1996 Certification Considerations for Highly-Integrated
or Complex Aircraft Systems

SAE ARP 4761 1996 Guidelines and Methods for Conducting the Safety
Assessment Process on Civil Airborne Systems and
Equipment

UL 1998 1998 Standard for Safety-Related Software (U.S.)

 xxi

GLOSSARY

Term Definition Source

Arity The number of arguments a function or
operator takes.

computing-dictionary

Quality
Assurance

(1) A planned and systematic pattern of all
actions necessary to provide adequate
confidence that an item or product conforms
to established technical requirements.
(2) A set of activities designed to evaluate
the process by which products are
developed or manufactured.

IEEE610.12

Safety
Assurance

(1) The degree of confidence required in the
correctness of a particular process or tool.
(2) The planned and systematic actions
necessary to provide adequate confidence
and evidence that a product or process
satisfies given requirements.

(1) DEF STAN 00-55

(2) DO-178B

Software
Assurance

Software assurance is the planned and
systematic set of activities that ensures that
software processes and products conform to
requirements, standards, and procedures.
‘Processes’ include all of the activities
involved in designing, developing,
enhancing, and maintaining software;
‘products’ include the software, associated
data, its documentation, and all supporting
and reporting paperwork.

AAP 7001.054

Software
Quality

The ability of software to satisfy its
specified requirements.

MIL-STD-498

System
Safety

The application of engineering and
management principles, criteria, and
techniques to achieve acceptable mishap
risk, within the constraints of operational
effectiveness and suitability, time, and cost,
throughout all phases of the system life
cycle.

MIL-STD-882D

 xxii

THIS PAGE INTENTIONALLY LEFT BLANK

 xxiii

ACKNOWLEDGMENTS

I wish to express my sincere gratitude to the Royal Australian Air Force for

giving me the opportunity to pursue the Master of Science in Software Engineering at the

Naval Postgraduate School. In a climate of scarce resources, the opportunity to pursue

educational opportunities in a foreign country is rare. I am also grateful that the United

States Navy and the Naval Postgraduate School have the wisdom to offer this degree

program, seeing value in this program of study when other institutions do not.

I must express my gratitude to Professor Michael, my academic associate and

thesis advisor, for sharing his knowledge and experience with me. He was always willing

to offer his insight and advice on this thesis and other coursework, despite the

considerable constraints on his time. He also deserves special recognition for regularly

stepping-in to fill-the-gap when a course required an instructor. To him, and the other

members of the Software Engineering Department, I owe a great debt.

This thesis is dedicated to my wife who resolutely endured the trials of being a

study-widow, again, and provided the unfailing support that permitted me to focus during

the duration of the course.

 xxiv

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. EVOLUTIONARY DEVELOPMENT OF AIRCRAFT AND AEROSPACE
SOFTWARE
There are many reasons for software evolution. Seacord, Plakosh and Lewis [1]

identify three categories of evolution: (i) maintenance, (ii) modernization and (iii)

replacement. They describe maintenance as small changes that are typically corrections

to software faults or minor enhancements. Modernization involves major changes to a

system, but which preserve a significant amount of the old system. Modernization may

take the form of retargeting old software to a new hardware platform; revamping the

human machine interface to improve usability; component substitution, such as with

alternate commercial products; source code translation to new versions of the same

language or different languages to that previously used; code reduction to remove unused

functionality or re-factor remaining functionality; and functional transformation to

achieve structural improvement. Replacement involves adopting a completely new

design for a system when the old system cannot be modernized in an effective manner.

Seacord, Plakosh and Lewis go on to identify complexity, software technology

and engineering processes, risk, commercial components, and changed business

objectives as challenges to modernization. Leveson [2] identifies the appearance of new

hazards, an increased exposure to software-intensive systems, greater amounts of energy

being monitored or controlled by software, and an increased reliance on software for

monitoring and control of systems as further challenges to software maintenance.

Additional challenges experienced in the military domain include the need for high

degrees of inter-operability with external systems; national and international rather than

personal or commercial security concerns; and a harsh operating environment (i.e.,

combat) in which the system must continue to operate.

Military aerospace systems are examples of software-intensive systems that

exhibit many of the aforementioned challenges. Such systems are costly to produce and

take many years to develop. For example, consider the following timeline for the Boeing

(McDonnell Douglas) F/A-18A/B/C/D: [3,4,5,6]

 2

1970s Predecessor design (Northrop YF-17) proposed as an Air
Combat Fighter for the United States Air Force. (F-16 chosen
instead).

1975 Modified design (F-18) accepted as a Naval Air Combat Fighter
for the United States Navy (USN) and Marine Corps (USMC).

1970/1980s Variant designs for Attack (A-18) and Trainer (TF-18) versions
developed but eventually merged to become the F/A-18A single-
seat and F/A-18B dual seat versions.

1978 & 1979 First flights of an F/A-18A & B respectively.

1980-1988 F/A-18A & B aircraft delivered to USN and USMC.

1982-1988 CF-18A & B aircraft delivered to Canadian Forces – Air
Command.

1984-1990 AF/A-18A & B aircraft delivered to Royal Australian Air Force
(RAAF). [7]

1986-1990 EF-18A & B aircraft delivered to Spanish Air Force.

1987-2000 F/A-18C & D delivered to USN and USMC.

1991-1993 F/A-18C & D aircraft delivered to Kuwait Air Force.

1992-2008 Upgrade of Spanish Air Force EF-18A & B aircraft.

1995-2000 F-18C & D aircraft delivered to Finnish Air Force. [8]

1996-1999 F/A-18C & D aircraft delivered to Swiss Air Force.

1997 Delivery of F/A-18D aircraft to Royal Malaysian Air Force.

1997 Merger of the Boeing and McDonnell Douglas companies.

1999 onwards Upgrade of USN and USMC F/A-18A, B, C & D aircraft.

2002-2010 Upgrade of RAAF F/A-18A & B aircraft. [7]

2002-2009 Upgrade of Canadian Forces – Air Command CF-18A & B
aircraft. [9]

2004-2008 Upgrade of Swiss Air Force F/A-18C & D aircraft.

2007-2014 Upgrade of Finnish Air Force F-18C & D aircraft. [8]

2015 Planned withdrawal of RAAF AF/A-18 aircraft. [10]

2017-2020 Planned withdrawal of the Canadian Forces – Air Command CF-
18. [9]

2020 Planned withdrawal of Spanish Air Force EF/A-18 aircraft

2025 Planned withdrawal of Finnish Air Force F-18 aircraft. [8]

 3

Military aircraft are not alone in their long life and continual upgrade. After three

years of initial design work on the original design, the Boeing 747-100 design was

accepted in 1966 and entered service in 1970. In the forty years since then, four other

significant variants and thirteen minor variants have been or are being built [11]. The

delivery of the latest 747-8 aircraft is conjectured to last twenty years from a planned

service date of 2009. It is conceivable that these aircraft will be flown for twenty years

beyond final delivery. While the last design will be substantially different from the first,

this represents around eighty years of evolution.

The F/A-18 timeline above only includes four major variants of the F/A-18

without mention of the different configurations of equipment and software for the eight

nations that utilize this aircraft. Nor does it include the three F/A-18E/F/G variants

which some consider to be substantially different from the earlier variants of the aircraft.

The timeline above reveals an approximately thirty year life to date and around fifty years

total for development, maintenance, and modernization from the conception of the F/A-

18 to its planned final disposal. Two dominant reasons for changes to aircraft are new

mission requirements and technology improvements, such as the addition of an attack

role as well as the air combat role for the F/A-18, and the availability of new equipment

such as the Joint Helmet Mounted Cueing System (JHMCS) or new weapons such as the

AIM-9X air-to-air missile. Given the long development time and service history of

aircraft, many changes to an aircraft design can be expected over its lifespan.

Furthermore, the considerable amount of previous expenditure on an existing aircraft

invites modernization of the existing platform before purchasing a new aircraft. Unit

costs of F/A-18A & B aircraft have been reported between USD28-35 million.

A critical enabler for variants and upgrades of all aircraft is software. The

collection of Operational Flight Programs (OFP) in the many different processors of the

F/A-18 is collectively called a Software Configuration Set (SCS). Some of the SCS that

have been developed or are currently in development or planning for the F/A-18A/B/C/D

include 89C, 91C, 92A, 09C, 10A, 11C, 12A, 13C, 15C, 17C, 18E, 19C, 21C, 23C, 25C.

Some of these SCS were integral to the hardware upgrade programs that were listed in

the timeline. However, most of them are new versions of an SCS for the same target

 4

platform. In addition to this list of SCS, there are also different versions of some of the

above SCS for different international customers, for example, 15C for the USN and

USMC but 15CA for the RAAF; and at least two countries outside the United States

(U.S.) are both maintaining and modernizing the SCS that they receive to meet their own

unique requirements and priorities. The 15C SCS is a recent software development that

demonstrates many of the challenges to software modernization. The 15C SCS was

delivered in 2001 after four years of development. This SCS started out with seventy-

five high-level Statements of Requirements to be completed in three builds and ended

with 134 Statements of Requirements delivered over four builds. The final product

integrated three new weapons and five new major avionics systems. The 15C SCS has

over ten million source lines of code (SLOC), across more than forty processors and uses

twelve languages in the aircraft with a further two in the development environment which

itself has four million SLOC [12]. Several computer processors in the F/A-18 required

upgrading, forcing retargeting of the OFP to run on them. Replacement color displays

and the integration of the JHMCS have enabled a revamping of parts of the human

machine interface.

B. SAFETY-CRITICAL SOFTWARE CERTIFICATION
An essential part of developing safety-related aerospace software that is expected

to be operationally fielded is to comply with the airworthiness design requirements

specified by the certification authority. Examples of airworthiness certification

authorities include the Federal Aviation Administration (FAA) for civilian aviation in the

U.S., the Australian Defence Force (ADF) for military aviation in Australia, and the

Naval Air Systems Command for USN and USMC aviation. Airworthiness design

requirements address the acceptable level of confidence required in the safety of all parts

of the aircraft system: hardware, software and the human operators (sometimes referred

to as “skinware”). Software system safety requirements address those parts of a system

for which software is identified as the source of, detector of, or means of containing a

system fault, regardless of the locus of the fault. “Certification is normally based on the

use of some form of standard…” [13]. The current ADF preference for a software

 5

assurance standard for the development of safety-related aerospace software is the Radio

Technical Commission for Aeronautics (RTCA) DO-178B ‘Software Considerations in

Airborne Systems and Equipment Certification’ [14].

Obtaining an appropriate return on investment (ROI) is an understandable

expectation for the acquirer of any system. The considerable amount of resources it takes

to develop a large aerospace system necessitates a relatively lengthy time of system

operation in order to recoup this investment. The system will change over time to

account for one or more of the following: corrections to design faults or implementation

flaws in the previous system, adaptations of existing system functions to accommodate

changes in environment or operations, or completely new features that meet previously

infeasible or unimagined requirements. One element for consideration when modifying

software is to maintain at least an equivalent level of assurance as that for the initial

development. However, legacy software previously developed to standards such as

DOD-STD-2167A or MIL-STD-498 may not have included adequate provision for

software assurance that would meet today’s standards. As such, a desirable goal during

software modification is to upgrade the previous certification basis by addressing the

objectives of a contemporary software assurance standard such as DO-178B [15].

Applying DO-178B guidance to the development of new software requires considerable

effort at safety levels of higher integrity, but is relatively straightforward when compared

with the re-certification of legacy software to DO-178B that did not have the DO-178B

guidelines applied during the previous software development.

Developers may choose to improve their software development processes when

modifying legacy software in order to achieve certification to a new software assurance

standard. When an applicant seeks re/certification, the certification authority takes into

account whether the evidence provided by the software development team sufficiently

addresses the software assurance objectives, activities and considerations. The level of

confidence one has that the modified software deserves certification against a new

software assurance standard should increase each time the legacy software is further

modified and re-certification is subsequently achieved, ceteris paribus. This approach to

certification of evolving software is the current practice of the ADF.

 6

However, re-certification of software to a new software assurance standard may

be built upon legacy software that in some fundamental way does not warrant

certification to a new standard of level. Whilst the improved processes applied during

modification address the modification itself and any identified interfaces to non-modified

software, the processes may not address the fundamental system safety properties of that

part of the underlying legacy software that is not addressed in the modification or is not

identified as interfacing the modified areas. This approach to re-certifying legacy

software raises the following question: Could legacy software be fundamentally flawed

in areas that are left unmodified during software evolution and result in unwarranted

certification of software to a new software assurance standard?

C. UNDERLYING CONCEPTS AND DEFINITIONS

1. Legacy Software
For the purposes of this thesis, the term legacy software means software that has

been previously developed and is subject to modification, that is, both maintenance and

modernization. More specifically, it is software that has been developed to a defined

standard, or through a defined process, so that the software has a known pedigree, but a

pedigree that is not currently desirable. It is recognized that this is a narrow definition

and does not, amongst other scenarios, include the reuse of software in a new application

without first being modified.

2. Software Safety within System Safety
MIL-STD-882D has the following definition for safety:

Freedom from those conditions that can cause death, injury, occupational
illness, damage to or loss of equipment or property, or damage to the
environment. [16]

Leveson defines safety in a manner consistent with this absolute point of view as

“freedom from accidents or losses,” but recognizes that this is not achievable for real-

world systems, especially those systems that are complex. Absolute safety is, however,

the goal that should be the starting point from which judgments about acceptable levels of

mishap risk are made. Leveson goes on to make the case that safety is a system property

that has a contribution from software whenever software is involved in a system. The

definition for system safety from MIL-STD-882D is:

 7

The application of engineering and management principles, criteria and
techniques to achieve acceptable mishap risk within the constraints of
operational effectiveness, time and cost throughout the system’s life cycle.

This definition and its nearly identical predecessor in MIL-STD-882C start out

with a provisional view of system safety that is a function of system effectiveness and

development schedule and cost.

Roland and Moriarty [17] state that the following as the concept for system

safety:

… involves a planned, discipline, systematically organized, and before-
the-fact process characterized as the identify-analyze-control method of
safety.

In both of the preceding definitions, system safety is assumed to be reliant on the

process by which a system is developed; that is, system safety does not simply happen by

chance, but is instead part of system design. However, just having a development

process does not guarantee that a system will be safe (whatever your definition of safety).

The process must be suitable, rigorous, complete and actually used to develop a product

that can be regarded as relatively safe with some degree of confidence in the assertion of

safety.

The application of system safety engineering focuses on the early identification

and analysis of hazards which in turn permits the system developer to mitigate them

through system design. This is the preferred method of treating systems hazards. The

alternative is late identification of hazards which forces either the treatment of hazards

through the less desirable procedural and training mitigation measures, or the costly

rework (in time and money) to incorporate design mitigation measures.

Software is an abstraction and as such, it has no substance and cannot directly

harm people, property or the environment. However, software can be responsible for the

loss. The opportunity for software to contribute to loss is enabled through its use by

system developers to sense and control physical components within a system and its

environment; the physical components can release energy that can harm someone or

something. Safety of software is just one of a system’s properties, and is dependent on

 8

the software, hardware, operator and external factors. Leveson provides the following

definition of software system safety that is consistent with this perspective: “Software

System Safety implies that the software will execute within a system context without

contributing to hazards” [2].

3. Software Assurance
The ADF Airworthiness Design Requirements Manual describes software

assurance in the following terms:

Software assurance is the planned and systematic set of activities that
ensures that software processes and products conform to requirements,
standards, and procedures. ‘Processes’ include all of the activities
involved in designing, developing, enhancing, and maintaining software;
‘products’ include the software, associated data, its documentation, and all
supporting and reporting paperwork. [14]

The Institute of Electrical and Electronic Engineers (IEEE) Standard Glossary of

Software Engineering Terminology does not define software assurance but does have an

entry for software quality assurance which refers readers to quality assurance which

states:

(1) A planned and systematic pattern of all actions necessary to provide
adequate confidence that an item or product conforms to established
technical requirements.

(2) A set of activities designed to evaluate the process by which products
are developed or manufactured. [18]

The National Aeronautics and Space Administration (NASA) does define

Software Assurance, and does so in terms from the IEEE Standard Glossary [18], but

adds that NASA’s definition includes the disciplines of software quality, safety,

reliability, and verification and validation:

The planned and systematic set of activities that ensure that software life
cycle processes and products conform to requirements, standards, and
procedures. [19]

NASA elaborates on this definition of software assurance by introducing

functional or mission-requirement elements and adds the aspect of oversight to the

assurance activity:

 9

Software assurance is an umbrella risk mitigation strategy for safety and
mission assurance of all of NASA’s software. The purpose of software
assurance is to assure that software products are of high quality and
operate safely.

Assure is used when software assurance practitioners make certain that the
specified software assurance, management, and engineering activities have
been performed by others.

Finally, for plain English definitions of assurance, the following are taken from

Wiktionary:

(1) The act of assuring; a declaration tending to inspire full confidence;
that which is designed to give confidence.

(2) The state of being assured; firm persuasion; full confidence or trust;
freedom from doubt; certainty. [20]

Based on the preceding definitions, one can conclude that the aim of software

assurance is to provide confidence that the software complies with all of its requirements

(e.g., functional, safety, reliability) and that software assurance is distinct from other

software development activities. In some cases software assurance activities require an

independent oversight to justify the non-independent claims of software assurance.

4. Mission Hazards
An additional consideration for military systems is mission-worthiness. If part or

all of a combat military system’s (e.g., tank, ship, aircraft) self-defense mechanisms is

inoperable, the system will be subject to additional mission hazards that are a part of the

combat environment, for instance, loss of lives and equipment through destruction or

capture. Unacceptable consequential losses may also be incurred by either of the

combatants if a military system’s offensive capability is faulty or inoperable, such as

failure to destroy an enemy may result in subsequent loss of friendly forces, or

inaccuracies in targeting may increase collateral damage and loss. These examples do

not fit the contemporary view of safety hazards, but rather operational or performance

failures that have hazards as an indirect consequence. However, due to the dire

consequences of some operational or performance failures in a combat environment,

application of the techniques that assure safety of software can also be applied to the

mission requirements of software-intensive systems.

 10

THIS PAGE INTENTIONALLY LEFT BLANK

 11

II. SAFETY-CRITICAL SOFTWARE STANDARDS

A. EXAMPLES FROM THE AEROSPACE DOMAIN
The focus of this thesis is the application of DO-178B as it is the preferred

standard for software assurance for safety-related airborne software in the ADF. This is

not to say that alternative standards do not exist or are unacceptable. In the aerospace

domain, software-related standards in use include:

RTCA DO-178B ‘Software Considerations in Airborne Systems and Equipment
Certification’ in conjunction with an acceptable system/software safety
standard for civilian aviation in the U.S.

MIL-STD-498 ‘Software Development and Documentation’ in conjunction with
MIL-STD-882D ‘Standard Practice for System Safety’ for military
aviation in the U.S.

DEF STAN 00-55 ‘Requirements for Safety Related Software in Defence
Equipment’1 produced by the United Kingdom Ministry of Defence

NASA-STD-8739.8 ‘Software Assurance Standard’ for the development of
aerospace software within NASA

ECSS Q-80B ‘Software Product Assurance’ by the European Space Agency

B. EXAMPLES FROM OTHER DOMAINS
Aerospace software is just one safety-critical domain that requires standards for

software development and/or assurance. Other domains and the standards proposed for

them include:

EN 50128 ‘Software for railway control and protection systems’ and IEC 62279
‘Software for railway control and protection systems’ for the development
of software in the railway domain

IEC 60880 ‘Software for computers in safety systems of nuclear power stations’
and IEC 62138 ‘Software aspects for computer-based systems performing
category B or C functions’ for application to nuclear power station
software

IEC 60601-1-4 ‘General requirements for safety - Collateral Standard:
Programmable electrical medical systems’ for software in the medical
equipment domain

1 Now obsolete and superceded by DEF STAN 00-56 ‘Safety Management Requirements for Defence

Systems’.

 12

ISO/TR 15497 ‘Road vehicles – Development guidelines for vehicle based
software’ and the Motor Industry Software Reliability Association
(MISRA) Report 2 ‘Integrity’ for software in the road vehicle domain

The following list of standards has been proposed for general use, rather than

being identified for application in a single domain:

IEC 61508 ‘Functional safety of electrical/electronic/programmable electronic
safety-related systems’

ISO/IEC 12207 ‘Information technology – Software life cycle processes’

ISO/IEC 9126 ‘Software engineering – Product quality’

ISO/IEC 14598 ‘Software engineering – Product evaluation’

ISO/IEC 90003 ‘Software engineering – Guidelines for the application of ISO
9001:2000 to computer software’

C. RTCA DO-178B – SOFTWARE CONSIDERATIONS IN AIRBORNE
SYSTEMS AND EQUIPMENT CERTIFICATION

1. DO-178B Fault Condition Categories and Safety Levels for Software
DO-178B was developed in collaboration with the European Organisation for

Civil Aviation Equipment (EUROCAE) which published the document as ED-12B with

the same title. The RTCA is not an officially sanctioned authority, and as such, DO-

178B is not mandatory for use within the U.S.. However, DO-178B is highly regarded

within the aviation community and is the preferred software assurance standard for

safety-related airborne software by the FAA and ADF. DO-178B pertains to the

assurance and certification of all software requirements, not just safety-related software

requirements, but does make specific mention of the safety-related requirements that are

imposed on aerospace software by the system safety process.

Before the guidelines of DO-178B can be applied, a system safety assessment

process (not included as part of DO-178B) is used to determine the sources of any safety-

related requirements and the failure condition categories associated with them. Two

system safety standards that may be used for this purpose are MIL-STD-882C [21] and

the SAE ARP4754 [22]. Safety-related requirements are allocated to the various sub-

systems during the system safety program. Those requirements that have been allocated

to software as the source, the detector or the method of fault containment, are allocated a

safety level for the most severe failure condition category associated with that component

 13

of software from the following list in Table 1. For example, the flight control sub-system

would very probably warrant a failure condition category of catastrophic (as determined

by the system safety program) and hence the software component of the flight control

subsystem would be developed as safety level A software.

Failure Condition Category Safety Level

Catastrophic A
Hazardous/Severe-Major B
Major C
Minor D
No Effect E2

Table 1. RTCA DO-178B Safety Categories and Software Levels

The allocated safety level then determines the following: which subset of

activities must be conducted, the degree of rigor to be applied to the activities, whether

the assurance of them needs to be conducted independently from development, and the

control category for data management of the software products.3

2. DO-178B Objectives, Activities, Considerations and Evidence
DO-178B is an objective-based standard that specifies the objectives for three

categories of software lifecycle processes; the three categories are planning, development

and integral processes. For each process, DO-178B defines:

a. Activities to achieve software life cycle objectives,

b. Design considerations to support software lifecycle objectives, and

c. Evidence that demonstrates that software lifecycle objectives have been
achieved.

DO-178B also identifies by safety level what control should be placed on the data

items produced and whether an objective and activity should be conducted by parties

independent of the software development.

2 Level E software does not require the application of any DO-178B activities, considerations or
evidence.

3 Use of the term ‘software product’ within this thesis is synonymous with ‘software artifact’ and
consistent with the use in [27].

 14

In total, DO-178B lists sixty-six planning, development and integral objectives

that are applicable to software assessed as being safety level A. For safety level D

software, a subset of only twenty-eight objectives are required. The complete set of

objectives are listed in Annex A of this thesis, and grouped as listed in Table 2. Numbers

in parentheses indicate the number of objectives that are required to be independently

assessed, rather than assessed by the software product developer.

Safety Level
Lifecycle Processes

A B C D

Planning 7 7 7 2
Development 7 7 7 7
Verification 40 (22) 39 (11) 32 8
Configuration Management 6 6 6 6
Quality Assurance 3 (3) 3 (3) 2 (2) 2 (2)
Certification Liaison 3 3 3 3

Total 66 65 57 28

Table 2. Breakdown of Objectives by Lifecycle Process and Safety Level

As can be seen, the greatest number of objectives for software safety levels A, B

and C are verification, totaling nearly two-thirds of the objectives required for each of

these safety levels. The verification activity spans the range of software development

activities. Planning, development, configuration management, quality assurance and

certification liaison objectives are almost uniformly applied across safety levels A

through D.

3. Circumstances for the Application of DO-178B

In addition to being applied to the development of original software, DO-178B

may be applied under any of the following circumstances:

a. Software that was previously developed and certified to DO-178B and is
to be modified and certified to the same safety level as previously
achieved

b. Software that was previously developed for a different aircraft installation
and may or may not be subject to modification before seeking certification

 15

c. Software that was previously developed using a different development
environment or developed for a different application environment

d. Software that was previously developed to different standards or
guidelines, such as commercial-off-the-shelf (COTS) software, a different
standard, or to DO-178B but to a different safety level.

A note to section 2.2.3 of DO-178B provides the following advice regarding

software modification:

The applicant may want to consider planned functionality to be added
during future developments, as well as potential changes to system
requirements allocated to software that may result in a more severe failure
condition category and higher software level. It may be desirable to
develop the software to a level higher that that determined by the system
safety assessment process of the original application, since later
development of software life cycle data for substantiating a higher
software level application may be difficult.

The use of DO-178B during software evolution is not without its problems.

Johnson identified literal interpretation of the current standard and incorrect application

of its predecessors, DO-178A and DO-178, as areas of concern.

Challenges in using DO-178B are already occurring. They include the
discovery that previously certified systems didn't necessarily use earlier
versions of DO-178 correctly and now result in greater transition issues.
Literal interpretation remains a problem. [23]

D. MIL-STD-498 – SOFTWARE DEVELOPMENT AND DOCUMENTATION
This section presents a brief description of the software requirements specified in

MIL-STD-498. MIL-STD-498 is chosen as a representative legacy software standard

because of the prevalence of military aerospace systems still in operation today that were

developed in accordance with (IAW) this standard.

1. Background and Scope of MIL-STD-498

MIL-STD-498 was developed to resolve the objections to MIL-STD-2167A

Defense System Software Development and to merge its contents with those of 7935A

DoD Automated Information Systems Documentation Standards, thus forming a single

best-of-both standard that was consistent with other Department of Defense policy and

instructions that were released at around the same time of issue of MIL-STD-498.

 16

One of the significant changes to the requirements in MIL-STD-498 was an

attempt to be independent of any particular development methodology. The standard

provides considerable guidance for application to the grand design, incremental design,

and evolutionary design development methodologies as an example of the proposed

flexible use of the standard. Another deliberate change from earlier standards was a

recognition that software product data could and should be provided in alternative forms

to traditional documents, in fact advocating the use of natural work products rather than

development of additional documents as evidence of activities and results.

Attempting to merge weapon system software and information system standards

led to a document that has a number of requirements that have little or no relevance to

airborne software, for instance, a software center operating manual. This situation does

not present a problem as MIL-STD-498 repeatedly advises that the requirements of the

standard should be tailored to suit the particular software development project. Guidance

and instructions for tailoring are provided in each of the general and detailed

requirements and in the associated Data Item Descriptions (DID). The standard also

makes reference to the general tailoring guidance in MIL-HDBK-248 Acquisition

Streamlining.

2. MIL-STD-498 Process and Product Requirements
Approximately thirty general and detailed requirements and approximately

twenty-nine types of software products are described in MIL-STD-498 which references

the content in the twenty-two accompanying DID for specific information. Development

processes that are required by the standard include:

a. Participation in system-level activities (requirements through to testing),

b. Software requirements analysis, design, and implementation,

c. Verification, integration, testing and corrective action,

d. Configuration and risk management, metrics analysis, quality assurance,
reviews, audits, and

e. Installation and transition.

 17

Software development products are introduced and briefly described in the

standard and more fully described in the accompanying DID. The 22 DID specified by

MIL-STD-498 include:

a. Plans for the conduct of software development activities

1. Software Development Plan

2. Software Test Plan

3. Software Installation Plan

4. Software Transition Plan

b. Specifications of system, software and software

1. System/Subsystem Specification

2. Interface Requirements Specification

3. Software Requirements Specification

4. Software Product Specification

c. Descriptions of concept, designs, tests and delivered software

1. Operational Concept Description

2. System/Subsystem Design Description

3. Interface Design Description

4. Software Design Description

5. Database Design Description

6. Software Test Description

7. Software Version Description

d. Manuals for users and support personnel

1. Software User Manual

2. Software Center Operator Manual

3. Software Input/Output Manual

4. Computer Operation Manual

5. Computer Programming Manual

6. Firmware Support Manual

e. Software Test Report to record, report and explain the results obtained
from software testing

The standard stresses the use of natural software products, not additional

documents. For this reason the products listed above are titled as descriptions, not

 18

documents, to remove the temptation to only consider them as traditional documents.

The standard encourages alternative mediums for records such as data within computer-

aided software engineering tools, and substitution by commercial manuals where

applicable.

Whilst MIL-STD-498 makes the statement that it “invokes no other standards,” it

leaves specific details for some of the software-product content to related standardization

documents such as ANSI/IEEE Std 1008 Standard for Software Unit Testing, or requires

the developers to create and follow their own standards, such as “standards for

representing requirements, design, code, test cases, test procedures, and test results.”

3. MIL-STD-498 and Safety Requirements
Safety is regarded as one of three specific “critical requirements” along with

security and privacy. However, safety considerations are left very short on detail about

how to satisfy them and make no distinctions for varying degrees of safety level. The

treatment of safety within MIL-STD-498 is largely limited to the section §4.2.4.1.

4.2.4.1 Safety assurance. The developer shall identify as safety-critical
those CSCIs or portions thereof whose failure could lead to a hazardous
system state (one that could result in unintended death, injury, loss of
property, or environmental harm). If there is such software, the developer
shall develop a safety assurance strategy, including both tests and
analyses, to assure that the requirements, design, implementation, and
operating procedures for the identified software minimize or eliminate the
potential for hazardous conditions. The strategy shall include a software
safety program, which shall be integrated with the system safety program
if one exists. The developer shall record the strategy in the software
development plan, implement the strategy, and produce evidence, as part
of required software products, that the safety assurance strategy has been
carried out.

§4.2.4.1 is a simple statement of what is required without providing any guidance

to achieve it or issues to be considered when developing the required strategy and plan.

The standard lists external standards to supplement the requirements of MIL-STD-498,

these being MIL-STD-882 System Safety Program Requirements, MIL-HDBK-272

Safety Design and Evaluation Criteria for Nuclear Weapons Systems and IEEE Std 1228

Standard for Software Safety Plans. Treatment of safety in the various MIL-STD-498

DID is little better and is usually limited to precautionary notices, or specifying that

 19

safety requirements should be singled out “for special treatment” in separate

subparagraphs. This is again done without any detailed requirements, guidance or

considerations as to what special treatment entails. The meager offering in §3.7 of the

Software Requirements Specification DID (extract included in Appendix A) is as detailed

as the requirements for safety get in the standard or any of its DID.

4. MIL-STD-498 Software Product Evaluation and Quality Assurance
Section 5.15 describes the evaluation processes for software products. It

distinguishes between in-process evaluations to be conducted by the developer, and

evaluations associated with formal deliverables. The standard states requirements for the

independence of evaluations and the retention of records. Appendix D of MIL-STD-498

provides fourteen evaluation criteria for the twenty-nine software products that it

identifies. The evaluation criteria include the following types of considerations:

a. Contains all the applicable information of the relevant DID

b. Meets the Statement of Work and/or Contract Deliverables Requirements
List if applicable

c. Is understandable (by the target audience)

d. Is internally consistent within a product

e. Was developed IAW the software development plan

f. Consistent with requirements at the system and software level

g. Are feasible to implement

h. Covers requirements, design, implementation etc.

In-process software Testing (unit testing, unit integration and testing, Computer

Software Configuration Item (CSCI)/Hardware Configuration Item integration and

testing) do not receive the same treatment as formal qualification of CSCI and system

testing. In-process testing does not require testing personnel independence from

development personnel and does not provide any guidance for evaluation criteria beyond

the term ‘adequate.’ The ADF Airworthiness Design Requirements Manual has the

following statement regarding the adequacy of MIL-STD-498.

While many of the objectives under RTCA/DO-178B have placeholders in
MIL-STD-498, there are no criteria that can be used to assess the
adequacy of completion of the activity. For example, there is a
requirement for unit and integration testing, but there are no criteria that

 20

define when testing can be considered complete. Therefore MIL-STD-498,
in isolation, does not provide an adequate basis for software assurance
and, by itself, is not recognized by the TAR as a software assurance
standard. [14]

Software Quality Assurance of process and product is covered in section 5.16 of

MIL-STD-498 (extract included in Appendix A). The purpose of this process is to ensure

that activities are carried out; that the respective software products are produced and

evaluated; and that identified problems are recorded, analyzed and corrected or justified.

The standard also requires that, quality assurance activities be conducted by personnel

that are independent of the development and product evaluation activities, and that

quality assurance records be generated and retained.

 21

III. SOFTWARE EVOLUTION, CERTIFICATION AND THE
RELATIONSHIP WITH SOFTWARE STANDARDS

A. SOFTWARE EVOLUTION AS REENGINEERING
A useful representation of the steps involved during maintenance or

modernization has been proposed by Kazman, Woods and Carriere [24]. The model in

Figure 1 shows the multiple paths that software evolution may take from legacy code to

new code.

Figure 1. Model for Software Reengineering (From: [1])

The horseshoe model reveals a vertical path up the left side for understanding the

software by reconstruction from less to more abstract software products; lateral paths

across the model for code, functional and architectural transformations; and a vertical

path down the right side for refinement from software abstractions to code. It is not

always necessary or desirable to travel the full path around the outside of the horseshoe.

This would only be necessary if a major modernization effort was being undertaken and

 22

the only software product available from the legacy software development is the code,

thus forcing a reengineering project. At the other end of the software evolution spectrum

is minor modification. This may be achieved by a direct code transformation without

attempting to reconstruct design and architecture.

In all cases of software evolution, the developer makes a practical choice of

starting point on the left, reconstructs only as much as is necessary (if any), then makes

the transformation at that level, finally proceeding through the refinement process to the

new code (possibly only a partial refinement intended to simply incorporate new

requirements).

B. SOFTWARE PRODUCT VERIFICATION
There is debate within the software engineering community over the merits or

otherwise of inferring the quality of fielded software code from the quality of the people,

processes, and tools that an organization uses to develop software products. It is

generally accepted that whilst quality processes are a necessary enabler to produce

quality code, processes alone are not a guarantee of quality code. It is for this reason, that

the bulk of software processes for safety-critical software are in fact the software product

verification processes that include a wide range of activities from requirements

verification through unit testing to final qualification testing. Figure 2 [25] shows a

taxonomy of the major types of verification activities that must be conducted on various

software products. The testing branch of the verification techniques can be broken down

further into the following sub-types:

1. Requirements-based testing that addresses the system and software
functional and non-functional requirements

2. Function-based testing that addresses the software design functions

3. Structure-based testing that addresses the software implementation

4. Data-based testing that addresses different categories of data inputs, e.g.
random inputs, equivalent partitions, normal inputs, abnormal inputs and
boundary values

5. State-based testing for state-based software

6. Probability-based testing to assess software reliability

7. Fault-injection testing that uses prior experience to target likely sources of
error, tests fault-tolerance performance, or tests the test.

 23

Figure 2 Verification Techniques (From: [25])

Given the practical impossibility of performing exhaustive testing, an important

consideration for the verification of safety-critical software is the measure of coverage

that is provided by the verification effort. The quantity and type of verification that is

performed on software will determine the level of assurance that can be ascribed to the

fielded product.

C. SOFTWARE EVOLUTION AND CERTIFICATION
Recertification must be sought when significant hardware or software changes are

made to an aircraft design. MIL-HDBK-514 Operational Safety, Suitability, &

Effectiveness for the Aeronautical Enterprise [26] provide the following instances that

warrant recertification of airworthiness:

1. Changes that affect propulsion/drive system operation (including software)

2. Significant software revisions

3. Modification to weapons release/firing system, including stores
management system and associated weapons system software

1. Using Deductive Logical for Software Certification
Software certification is based on a conclusion that software meets its quality

specifications. In this paper, the quality specification of interest is safety; there are of

course other quality objectives that exist, for instance security, which have their own

certifications requirements. Accepting that the absolute definition of safety is not

 24

achievable for present-day complex systems, the practical conclusion that is drawn is that

a software product meets all4 of the software assurance objectives of an acceptable

software assurance standard. A conclusion should only be accepted as valid when it

flows naturally from the premises upon which it is founded.

The conclusion about software certification may be either positive (accepted) or

negative (rejected) and in either case is based on one of the following implications:

a. If all of the software assurance objectives are satisfied, then the software
is certifiable IAW the accepted software assurance standard, or

b. If any of the software assurance objectives are not satisfied, then the
software is not certifiable IAW the accepted software assurance standard.

What remains to be determined for this basis of a conclusion is a technique to

establish which of the above propositions is true. The following is a two-part proposal to

achieve certification of evolved software:

a. Acceptance or rejection of evidence that was produced during the prior
development of the software that is to be modified, and

b. Acceptance or rejection of evidence that is newly produced during the
development of the evolved software.

It is understandable that not all of the evidence presented from prior development

will be accepted as meeting the objectives of a contemporary software assurance standard

and in some cases will not even be applicable. In the cases where the prior evidence is

either inadequate or non-existent, new evidence will be required. New evidence must

also be produced for the parts of the software development that are unique to the

modification of the software. The focus of this thesis is a framework for determining the

adequacy of the existing software products in support of airworthiness certification of

evolving software.

2. Establishing the Safety Level Assessment

One of the early steps to be undertaken when commencing modification of safety-

critical software is to either establish or revise the safety level for the modified software.

A valid assessment of safety level is important as it determines the activities that need to

4 Excluding waivers which are left as an issue for certification authorities that deal with them on a
case-by-case basis.

 25

be conducted and the evidence that will need to be presented to an airworthiness authority

to achieve certification. Assessing the safety level can be achieved in the first instance,

by examining the existing system/software safety program outputs from the previous

development. When doing so, the assumptions made and analysis conducted for the

previous development must be reviewed in the light of the proposed modifications, and

then hazard identification and analysis must be conducted for the new requirements that

are proposed. If a system/software safety program was not conducted for the previous

development, or the information is insufficient or unavailable for any reason, a complete

hazard identification and analysis will need to be conducted. The final outcome of this

effort is the assessment of the failure condition category and requisite safety level for the

modified software.

3. Carrying Out Software Evolution
Once the software level has been determined, development should proceed in a

manner that facilitates the granting of an airworthiness certification. What this means is

that sufficient evidence must be produced throughout the life-cycle that demonstrates the

successful completion of the software engineering activities that address the objectives of

software assurance.

4. Achieving Airworthiness Certification
The final step to achieving airworthiness certification is the collation of the

evidence that supports certification. Two well known formats for this are the software

accomplishment summary described in DO-178B or the safety case described in DEF

STAN 00-55.

D. SOFTWARE EVOLUTION AND STANDARDS
The long time-frames over which aerospace systems are developed and then

continue to evolve expose them to ongoing changes in software engineering. This

evolution of the discipline of software engineering is manifest in the new computing

technologies, and the design, implementation and verification techniques that are

developed to cope with the increasing complexity of modern software-intensive systems.

Another source of software engineering evolution that directly affects the standards

 26

domain is military acquisition reforms to reduce the number of military standards; efforts

in this area aim to cancel rewrite or replace military standards with acceptable

commercial-equivalent standards.

Given the cost to develop safety-critical software for aerospace applications, a

reasonable expectation during software evolution is to be able to reuse the products that

were produced during the previous software development. The challenge to achieving

cost- and time-effective software reuse and the subsequent certification of the system

containing the reused software is to identify the relationship between the activities and

outputs of the previous development, and the activities and outputs required for the

modification. This thesis presents a model for identifying the necessary relationships to

facilitate software reuse in support of the certification of evolving safety-critical software.

The first version of software, version X in Figure 3, has a relationship R1, to

standard S1, that meets or exceeds the requirements for certification IAW standard S1 at

the time of development of X. Software products must comply with multiple standards if

no one standard provides all of the requirements needed for a software development

project. Relationship R1 explicitly represents just the one standard of interest; for the

purposes of this thesis the type of standard of interest is that of software assurance.

Figure 3. Software Evolution and Standards Relationship

The final set of software products that is produced during software development

provides a complete definition of software version X in Figure 3. However, it is only a

subset of this final set that is necessary to satisfy the requirements of standard S1. The

 27

compliment of this subset contains the additional products sometimes regarded as internal

to the development organization but which are necessary enablers for the activities that

complete the software development.

Version X of the software also has a relationship R2, to the contemporary standard

that is now preferred, but either was not available, or was not applied at the time of

previous development. This relationship exists from the moment that both standard S2

and version X of the software both exist, but may be of little practical interest until the

requirements of standard S2 are invoked for version X of the software.5

Version X′ of the software has a relationship to version X (R3), which is the result

of modification due to maintenance or modernization. Some of the reasons for this

modernization may be the addition of new features, removal of existing features,

retargeting the software to new hardware or revamping of the interface. Version X′ of the

software also has a relationship R4, to standard S2, which is the focus of this thesis. In

order to achieve certification of version X′, relationship R4 must satisfy the requirements

of standard S2 to the satisfaction of the certification authority. Versions X′′ and X′′′ and

relationships R5 through R8 are further iterations of the same principle for subsequent

modifications of the software. This model can also be applied to the introduction of a

third software assurance standard, in which case second standard (formerly S2) would be

represented by S1, and the third standard represented by S2. Furthermore, the standards

represented by S1 and S2 could be a different version of the old standard, for instance

DO-178B and the pending DO-178C. Using this construction of the relationships, the

evolution of the software product is represented by Equation 1:

()
1

n
n

t
s

X X X
=

= ∆∪

Equation 1. Software Evolution

5 Relationship R2 may never be invoked and in fact is unlikely to be invoked if version X does not

undergo any further changes.

 28

tX∆ represents the modification introduced at each iteration of the software

product, such as

3

2 3

1 2 3

X X X
X X X
X X X X

′′′ ′′= ∆
′= ∆ ∆

= ∆ ∆ ∆

∪
∪ ∪
∪ ∪ ∪

Further development of an expression for software evolution in terms of the

individual products to compose any given version requires an expression for software

engineering that produces a single software version. A description of such an expression

follows next.

E. ABSTRACT ALGEBRA AND MORPHISMS
Before applying the concepts of abstract algebra to software engineering, we

briefly review the theory of abstract algebra in its familiar mathematical domain. In

mathematics, all algebras are defined by a set of symbols A, and the set of operations Ω ,

that can be applied to the elements of A. Two algebras are said to be similar if they have

the same number of operations for each arity. A purely hypothetical case would be two

algebras are considered to be similar if they both have three unary operations, seven

binary operations and two ternary operations. Furthermore, two algebras are said to be

homomorphic if there is a function that provides a one-to-one correspondence between

every element of one symbol and operation set 1 1[A ,]Ω and another symbol and

operation set 2 2[A ,]Ω .

()() () () ()()

[] []

1 2 1 2If , ,..., , ,...,

 for every ,
 for every corresponding ,
 for every
 where is defined by the arity of
Then is a homomorphism from , to ,

n n

i

a a a a a a

a
n

φ ω ω φ φ φ

ω
ω

ω
φ

′=

∈Ω
′ ′∈Ω

∈Α

′ ′Α Ω Α Ω

Definition of Homomorphism

 29

To illustrate this with a common example, consider the homomorphic function of

logarithm that provides such a correspondence between multiplication and addition and

the set of symbols (numbers) that are valid for logarithms. One algebra R, is defined by

the symbol set of all positive real numbers and the single binary operation of

multiplication, that is { },R +⎡ ⎤= ×⎣ ⎦ . A second algebra L, is defined by the symbol set of

all real numbers (negative and positive) and the single binary operation of addition, that

is { },L ⎡ ⎤= +⎣ ⎦ . The reader might be tempted to propose that there are many other

operations that could be performed on the elements + and , but those operations

would be outside the definition presented here, and constitute a different algebra than

either R or L. Note also, that there is no requirement for the symbol sets A1 and A2 to be

equivalent. The two algebras R and L in this example are similar by virtue of each

having only one binary operation. Furthermore, algebras R and L are said to be

homomorphic by reason of the function () ()logx xφ = . For example:

()() () () ()()

()() () ()()

()() () ()()

() () ()

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

Using , ,..., , ,...,

 substituting

, ,

 substituting , and

, ,

 hence

n na a a a a a

Log

Log a a Log a Log a

Log a a Log a Log a

Log a a Log a Log a

φ ω ω φ φ φ

φ

ω ω

ω ω

′=

=

′=

′= × = +

× = +

× = +

Equation 2. Homomorphism Example – Logarithms

Another example of a homomorphic function is the Laplace Transform that

permits convolution in the linear time domain to be represented as multiplication in the

frequency domain.

F. ABSTRACT ALGEBRA AND SOFTWARE DEVELOPMENT
The relationships in Figure 3 are composed of the products (symbol set) that are

used and produced during the activities (operations) that are conducted during software

 30

evolution. Before applying the mathematical concept of homomorphism to software

evolution and standards interoperability, we first specify the sets Α and Ω as follows:

1. Α represents the set of all possible software products (rα) both used and
created during software development, and

2. Ω represents the set of all possible activities (sω) that are conducted on
the software products during software development.

Some obvious examples of the products rα , in set Α are the Plans, Requirements,

Infrastructure, Design, Source Code, Executable Code, Verification results. Section 1.5

of the IEEE Standard for Software Reviews [27] has a list of thirty-seven ‘software

products’ with the inclusion of such items as ‘anomaly reports,’ ‘build procedures,’

‘installation procedures,’ and ‘walkthrough reports’ in addition to the previously

mentioned products. Examples of the activities sω , in set Ω are Planning, Development,

Verification, Configuration Management, Quality Assurance, Certification etc. for the

various stages of software development.

Using the algebraic representation for software development we can now write:

()
 where conducting activity ,
 on an appropriate subset ,
 that has been produced prior to activity ,
 produces a new software artifact .

s s t

s

s

s

t

B

B

ω α
ω

ω
α

→

Equation 3. Single Product Development

Equation 4 provides an example of this algebraic description as the development

of code:

Development Plan
Coding Standards

Software Coding Code
Development Tools

Design

⎛ ⎞
⎜ ⎟
⎜ ⎟ →
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

Equation 4. Single Product Development – Code Example

 31

Each of the products used in the software coding activity (which in this example

is a quaternary operation) are themselves products of earlier software development

activities, that is, planning, defining standards, choosing and qualifying tools and

developing the software design. Development tools also encompass configuration

management and traceability systems in addition to the obvious tools such as text editors

and compilers. Design includes the software architecture and design-level software

requirements.6

While the source and object code are being produced by the software coding

activity, other important products are also being generated. These additional products

include updates to traceability information and configuration management data in

addition to the creation of feedback for the design and requirements activities in case any

errors (e.g., conflicting requirements) are found in them as a consequence of carrying out

the software coding activity. Including these products into the representation expands the

previous description of software development to that of Equation 5:

() ()
 where conducting activity ,
 on an appropriate subset ,
 that has been produced prior to activity ,
 produces the new subset of the software artifacts ,
 such that

s s s

s

s

s

s

s

B C

B

C
B C

ω
ω

ω

→

⊂().s

Equation 5. Single Activity

Equation 5 specifies that the set of products that are produced (CS) by an activity

is a proper superset of the products used (BS) during the activity. This would always be

the case, even in situations were some portion of the requirements, design or

implementation is removed. At the very least, the removed product should remain as part

of the development history for the software.

6 As distinct from system or high-level software requirements.

 32

The source code development example presented in Equation 4 is expanded to

have the following relationships that demonstrate the production of multiple software

products from a single software development activity:

Development Plan Code
Coding Standards Traceability Data

Software Coding
Development Tools CM Data

Design Trouble Reports

→⎛ ⎞
⎜ ⎟→⎜ ⎟
⎜ ⎟→
⎜ ⎟⎜ ⎟→⎝ ⎠

Equation 6. Single Activity – Coding Example

The last step in the algebraic representation of software development is to

represent the composition of all the development activities that together produce the

completed software package.

() 1
1

1

 where the union of activities ,
 on the appropriate subsets of artifacts ,
 produces the final set of artifacts .

m

s s
s

s

s

B

m
B

ω

ω
=

→ Α

Α

∪

Equation 7. Software Development

The last step in the algebraic representation of software development is to

represent the composition of all the development activities that together produce the

completed software package.

G. ABSTRACT ALGEBRA AND SOFTWARE EVOLUTION
Combining the representations in Equation 1 and Equation 7 provides the

composite expression in Equation 8 for the total output of software development as a

product evolves.

 33

()

()

()

() ()

1

1

1

1 11

For

where

and

then

n

n

n
n

t
s

p

t t
t

q

t t
t

n qp
n

t t t t
t ts

X X X

X B

X B

X B B

ω

ω

ω ω

=

=

=

= ==

= ∆

=

∆ =

⎛ ⎞= ⎜ ⎟
⎝ ⎠

∪

∪

∪

∪ ∪∪

Equation 8. Software Evolution

It is desirable from a cost-benefit perspective that some of the products that were

produced during previous software development be reused to achieve certification during

software evolution. In terms of the model presented in this thesis, this amounts to how

much of the software product package Xn satisfies the relationship R2(n+1). The greater

the amount of previously developed products that can be reused is clearly an important

business objective, but this must be achieved within the bounds of an acceptable level of

software assurance to meet airworthiness requirements.

In terms of the first iteration of software evolution, how much of the development

for version X’, is available as reused software product from the development of version

X, can be legitimately used to satisfy the relationship R4? A promising answer to this

problem lies in how much of the development for version X, that was used to satisfy

relationship R1 could have been used to satisfy the relationship R2? The next section of

this chapter examines this question.

H. APPLICATION OF MORPHISM TO SOFTWARE EVOLUTION
The mathematical concept of homomorphism was introduced in §III.E in order to

use it now as the basis for describing the correspondence of the products that constitute

the relationships R1 and R2. A function that transforms the products developed for

version X and satisfies relationship R1, to products that satisfy relationship R2 can be

used to identify the amount of reuse of existing software product that is available for

certification of the evolved software. Unfortunately, the definition of homomorphism has

a single function that provides the mapping between two sets of similar algebra. It would

indeed be nice if a single function existed to map all the products satisfying relationship

 34

R1 to also satisfy relationship R2. It would be perfect if such a function was an identity

function and hence no additional operations or activities were required to achieve the

desired correspondence. This is highly unlikely given that standard S2 either did not exist

or was not chosen as the basis for certification of the previous software development.

Three likely scenarios for morphims to the products that satisfy relationship R1 to make

them acceptable for relationship R2 are:

1. Some of the existing products will be able to be mapped using an identity
function, in which case no additional activity is required for them to be
considered as meeting the requirements of S2,

()t tφ α α→

Equation 9. Identity Morphism

2. Some of the existing products will be able to be mapped using a partial
function, in which case some rework or additional activity is required for
these to be used to meet the requirements of S2,

()t tφ α δα→

Equation 10. Partial Morphism

3. Some of the existing products will not be able to be mapped using any
function; or rather these products will be subject to a null function in the
transformation. In these cases, completely new work and software
products will be required to satisfy the requirements of relationship R2.

()tφ α →∅

Equation 11. Null Morphism

Achieving effective reuse during airworthiness certification is a matter of

maximizing the amount of products that can be found in the first two of these groups.

Ensuring adequate airworthiness is a matter of ensuring that products that are in the last

two groups are not mistakenly included in the first group.

This concept of morphism is applied to the software coding activity in the

following sections as an example for code generation. The next section has an

underlying premise that certification-related aspects to code generation that are important

 35

for safety-critical software are ensuring that software code and requirements are fully

traceable in both directions, and that code has been verified as correct and complete.

These aspects are described in the following paragraphs and presented in the

() ()s s sB Cω → algebraic notation.

1. Previous Software Development
The activity of software coding has plans, standards, tools and design as inputs to

this process. The chief product that is produced by the coding process (at least with

respect to an executable product) is code. Other products that are produced by the

software coding activity are traceability data, configuration management data and trouble

reports. These are not necessary to produce an executable product and may be regarded

by the code-centric developer as by-products of producing executable code, but they are

essential to achieving the software assurance necessary for a certifiable product.

Equation 6 is presented again below for the sake of completeness in this section.

XX

X
X

X

X X

CodeDevelopment Plan
Traceability DataCoding Standards

Software Coding
Development Tools CM Data

Design Trouble Reports

→⎛ ⎞
⎜ ⎟→⎜ ⎟
⎜ ⎟→
⎜ ⎟⎜ ⎟→⎝ ⎠

Equation 6. Single Activity – Coding Example

For safety-critical software, it is necessary to verify that all low-level

requirements have been met and to also ensure that there is no additional code that does

not have a traceable link back to requirements. Establishing traceability between code

and design (i.e., low-level requirements) is a process that has as inputs to the process;

code, design for that code, and development tools that permit traceability to be recorded.

The output traceability data is added to the traceability database of the software project.

X

X X X

Design
Code Traceability Code Traceability Data

Development Tools

⎛ ⎞
⎜ ⎟ →⎜ ⎟
⎜ ⎟
⎝ ⎠

Equation 12. Code Traceability

 36

The purpose of software testing is to ensure that the software design has been

implemented and does not contain errors. The inputs to this process are the code itself

and the verification tools that enable testing. (For the sake of simplicity in this example,

other inputs such as test scripts are considered to be part of the verification tools.) The

outputs from the testing process are the obvious test results, but also include traceability

and configuration management data and trouble reports.

XX

X
X

X X

X X

Test Logs and ResultsCode
Test Infrastructure Traceability Data

Software Testing
Test Plans, Cases and Procedures CM Data
Test Input Data Trouble Reports

→⎛ ⎞
⎜ ⎟→⎜ ⎟
⎜ ⎟→
⎜ ⎟⎜ ⎟→⎝ ⎠

Equation 13. Software Testing

This completes the description of the previous development of software products

associated with the software coding and the additional activities necessary for

certification of this small element of software development. The next section describes

the software coding and related activities for modification of the legacy software.

2. Software Modification
Plans, standards, tools and design are once again the inputs to the software coding

activity. However some of the activities undertaken and artifacts used during

modification may not be the same as those for the legacy software development. The

plans and design used for software modification will likely be different to that used for

the previous development, while the coding standards and development tools may or may

not be the same as previously used. In this example, it is assumed that the coding

standards and development tools are in fact the same as that used for the previous

development. Furthermore, no distinction is drawn between the deliberate reuse of

standards and tools and the unplanned reuse of the same that would be characterized as

salvage rather than reuse. New trouble reports, updated traceability data and

configuration data will again be generated in addition to the code as a consequence of the

modification.

 37

As the software coding activity is being conducted for the purposes of

maintenance or modernization and not replacement, the actual code produced during the

Software CodingM activity is likely to be just a fraction of the total code that defines the

final product. These considerations are expressly represented in Equation 14. In addition

to the modified code, the code that is unchanged from the previous development must

retain its traceability, correctness and completeness during the modification. The final

modified code is described by Equation 15.

MM

M
M

M

M M

CodeDevelopment Plan
Traceability DataCoding Standards

Software Coding
Development Tools CM Data

Design Trouble Reports

→⎛ ⎞
⎜ ⎟→⎜ ⎟
⎜ ⎟→
⎜ ⎟⎜ ⎟→⎝ ⎠

Equation 14. Software Coding – Modification

() ()O MCode Code Code= ∪

Equation 15. Software Code Evolution

Carrying out the activity of code traceability is also going to be a process that

considers both modified and unaffected software products. In the same manner as for

code generation, traceability data will be described by the union of outputs from both pre-

and post- modification traceability products described by Equation 16 and Equation 17.

M

M M M

Design
Code Traceability Code Traceability Data

Development Tools

⎛ ⎞
⎜ ⎟ →⎜ ⎟
⎜ ⎟
⎝ ⎠

Equation 16. Code Traceability – Modification

() ()X MTraceability Data Traceability Data Traceability Data= ∪

Equation 17. Software Traceability Evolution

 38

The same rationale applies to the software testing activity conducted for the final

modified software and the description of configuration management data, trouble reports

and test results that are produced by the activity. These are represented by Equation 18

through Equation 21.

MM

M
M

M M

M M

Test Logs and ResultsCode
Test Infrastructure Traceability Data

Software Testing
Test Plans, Cases and Procedures CM Data
Test Input Data Trouble Reports

→⎛ ⎞
⎜ ⎟→⎜ ⎟
⎜ ⎟→
⎜ ⎟⎜ ⎟→⎝ ⎠

Equation 18. Software Testing – Modification

() ()X MTest Logs and Results Test Logs and Results Test Logs and Results= ∪

Equation 19. Software Test Results Evolution

() ()X MCM Data CM Data CM Data= ∪

Equation 20. Software Configuration Management (CM) Data Evolution

() ()X MTrouble Reports Trouble Reports Trouble Reports= ∪

Equation 21. Software Trouble Reports Evolution

3. Software Product Morphism
The previous two sections described a portion of the software development

(software coding and related activities); first for previous software coding, and then for

the subsequent modification of the code. This section addresses which of the software

products from this total effort of previous development and modification might be used to

satisfy software assurance certification of the final modified software. Some of the

products from the previous development may be satisfactory, even if the currently desired

standard was not met for the previous development. It is likely however that at least

some of the software product will not be acceptable for the current certification effort,

even if the software assurance standard has not changed, this being the more likely

scenario if a new software assurance standard has been imposed upon the modification.

 39

a. Code Traceability

We firstly deal with traceability between design and code, which we have

asserted is one of the certification requirements associated with the software coding

activity in order to meet a software assurance standard. Equation 17 shows the two

components that comprise the full code traceability for the final modified code; existing

and modification traceability data. Acceptance that the software modifications were

carried out with the preplanned intention to meet a new software assurance standard,

leads to a reasonable expectation that the traceability data generated for the modified

segments of code will be acceptable. Traceability between unmodified code and design

may not be properly established after modification, especially if the traceability prior to

modification is questionable; this element of traceability is explored further in the

following paragraphs.

Table 3 shows a simplified example that demonstrates some of the

variations to code traceability as a consequence of modifications to code. Columns one

and two represent traceability between design elements and code units of the previous

development, while columns one and three represent traceability between design

elements and code units of the final modified software. The implementation of design

element ‘A’ is shown as traceable to code unit ‘M’ (and vice-versa) and remains

unchanged by the modification. The implementation of design element ‘B’ has been

restructured by the modification and is now traced to the new code unit ‘R’ in addition to

the previous code unit ‘N’. Design element ‘C’ was implemented in code unit ‘O’ of the

previous code, but has now been removed as a result of the modification. Traceability

information for design element ‘D’ is not shown for either the previous or the modified

code. The intention in this hypothetical example is that design element ‘D’ does exist as

a necessary element of the design and is present in the software (as verified by

requirements-based testing), but its traceability information was simply overlooked in the

previous development. Also for the purposes of this example, design element ‘D’ was

not associated with or considered during the software modification which prevents

anything being said about its traceability after the modification. Code unit ‘Q’ is

included in Table 3 to represent code that does not have any identified backwards

 40

traceability to design. Again, this reappears in the modified software because it was not

specifically addressed as part of the modification. Design element ‘E’ is a new feature

that is introduced as part of the modification and is traced to code unit ‘S’.

Design Element Previous Code Unit Modified Code Unit

A M M

B N
N
R

C O
D ? ?
? Q Q
E S

Table 3. Modified Code Traceability

Consider the final traceability data that is proposed to meet certification

requirements in the two parts identified in Equation 17; firstly the later of the two parts,

that which was generated during the modification, and lastly the earlier of the two parts,

that which was generated for the previous development.

() ()X MTraceability Data Traceability Data Traceability Data= ∪

Equation 17. Software Traceability Evolution

In this example, the software modification was composed of three facets:

(i) refactoring of design element ‘B’, (ii) removal of design element ‘C’ and (iii) addition

of design element ‘E’. It would be expected that the traceability data for design element

‘E’ will be properly detailed as part of the modification effort and as such, satisfy the new

certification requirements. We propose that the new traceability for design element ‘B’

will also be complete after the modification, although this will be somewhat different

from the traceability of design element ‘B’ for the previous development. Traceability

for design element ‘C’ will not exist, nor should it, for the modified software.

 41

The traceability data from the previous development (Traceability DataX

in Equation 17), even in this simple scenario, requires a morphism that is a composition

of identity, partial and null morphisms. Consider each of the design elements and code

units in turn.

The traceability data for design element ‘A’ for the previous development

can probably be used as-is for the modified software. In this case the identity morphism

applies:

()X MA ATraceabilty Traceabiltyφ →

Equation 22. Identity Morphism – Code Traceability

The software developer would very likely use the previous design element

‘B’ traceability data as a basis for establishing code traceability in the modified code. If

this is the case, the final traceability of design element ‘B’ will be a composite of the new

traceability data to code unit ‘R’ with a partial morphism of the previous traceability data.

This is represented in Equation 23.

()() ()X N RB B B BTraceability Data Traceabilty Traceabilty Traceability Dataδ= → ∪

Equation 23. Partial Morphism – Design Element ‘B’ Code Traceability

The traceability data for design element ‘C’ for the previous development

cannot be used for the modified software. In this example, the design element and

corresponding code unit have been removed from the modified software. Traceability

data for this portion of the software in the previous development is no longer applicable

to the final modified code. Furthermore, as it is not part of the modification (by

omission), any latent reference to it in the final traceability data will be an error. In this

case the null morphism should apply as in Equation 24:

()XCTraceabiltyφ →∅

Equation 24. Null Morphism – Code Traceability

 42

Design element ‘D’ and code unit ‘Q’ do not have any identified

traceability data from previous development and hence nothing can be said with certainty

about their traceability after the software modification. There is no traceability

information for them and therefore nothing to subject to a morphism function.

This example only focuses on a narrow aspect of traceability between

design and code. Traceability between other software products is also needed. It is usual

practice to have all of the traceability information collected into one traceability matrix or

database. In this case, the reader would appreciate that identification of existing

traceability data for appropriate reuse becomes an increasingly complex problem with

variation in the amount of partial morphism that would need to be applied to different

software products.

b. Software Testing

The design elements and code units already presented in Table 3 are used

again for the following analysis of test results for the modified code. We again treat the

latter of the two parts of the complete test results first, before discussing the reuse of

previous development test results.

() ()X MTest Logs and Results Test Logs and Results Test Logs and Results= ∪

Equation 19. Software Test Results Evolution

We again assume that the testing of modified code satisfies the

requirements for the new software assurance standard (and any unmodified code that may

interface the modification). This assumption equates to full acceptance of code unit R

and S test logs and results, and partial acceptance or possibly full acceptance of unit M

test logs and results. What remains is to determine the suitability of the test results for

the previous development that have not been covered as part of the modification. N.B.:

We assume here that the certification requirements placed on testing of the evolved

software has changed and that this new standard is more stringent in its requirements.

The degree to which test plans, cases, procedures, input data, logs and

results associated with code unit N from the previous development can be reused will

 43

depend on the manner in which testing was conducted for code units N and R after

modification of the software. We believe it to be likely that test cases, descriptions and

procedures would be completely redeveloped for the modification in all but the most

trivial modification efforts. This belief is based on the fact that design element B has

been refactored across two code units and the effort required to plan and conduct

completely new tests would be justified by comparison to the effort required to develop

only some new tests but integrate them with reused existing tests and results. This

assumption is highly dependent on the amount of refactoring, but we believe that

refactoring to include a second code unit would be significant enough to justify the

assumption; under this assumption we propose that the morphism to be applied to

existing test results for code unit N would be a null morphism. Testing for code unit O,

like traceability for it, has no bearing on the modified software and should also be

subjected to the null morphism.

()XNTest Logs and Resultsφ →∅

Equation 25 Null Morphism –Test Logs and Results

As was stated in the previous discussion regarding code traceability, the

code for design element D has been tested, despite not having traceability data to identify

which code unit provides the implementation. Test results could be obtained without the

code unit identification by undertaking requirements-based integration testing. However,

as mentioned in §III.B, there are other testing techniques in addition to requirements-

based testing that we propose would be the requirements of the newly applied software

assurance standard S2. In this case the mapping of test logs and results for design

element D will be the partial morphism.

()
DX MTest Logs and Results Test Logs and Resultsδ →

Equation 26. Partial Morphism – Design Element ‘D’ Test Logs and Results

 44

Once again, code unit ‘Q’ does not have any identified design element.

Code unit Q is thus unlikely to have any test logs and results from the previous

development and so again, there is nothing to subject to a morphism function.

The preceding discussion pertaining to the reuse of prior development test

logs and results only covered the issue of existence of the software products, not the

suitability of the products that do exist. An assessment of the adequacy of the previous

test logs and results to meet the new standard would have to be made. The measure of

adequacy would include what class (timing/performance/loading etc.) of testing was

conducted, what coverage was provided (requirements/statement/state/range -based), and

the evaluation criteria. It is likely that under these considerations, the degree of partial

morphism .for many, if not all, previous test logs and results would be further reduced by

a partial morphism.

c. General Considerations for Software Product Morphism
The preceding discussion has not distinguished whether the assigned

safety level of the modified software has changed from the assigned safety level for the

previous development. In the cases where the assigned safety level has been increased,

the amount of software product from the previous development that can be reused for the

purposes of certification of the modified software would be expected to be significantly

reduced. It would be probable that any of the software products to be reused would be

subject to partial morphism and require additional work to make them suitable for use in

the new certification application.

 45

IV. RELATED WORK

A. ARCHITECTURAL TRANSFORMATION
Grunske’s work on the semi-automatic improvement of the nonfunctional

properties of software using hypergraph transformations [28] is founded on the concept

of morphisms to modify architectural elements during the design stage of software

development. This work compliments the approach proposed in this thesis by providing

a technique to assess a given system’s architecture for its ability to achieve specified

requirements for software quality such as system safety. The technique provides an

assessment of whether the software architecture complies with stated requirements for

software quality, or requires alteration to meet system requirements.

It is cost effective to continually conduct evaluations of the nonfunctional

properties of a system from the earliest possible opportunity. Grunske proposes a method

for semi-automatically conducting a comparison of nonfunctional properties of a system

with different architectures of the required components. The comparison begins with an

architectural specification that satisfies the entire set of functional requirements, and then

continues with alternative architectural elements that are available in the analysis tool. If

the evaluation determines that a nonfunctional requirement is unachievable to the desired

level, such as safety, then the architectural specification must be transformed to one that

achieves the quality performance requirements without compromising the attainment of

functional requirements. If no impediments to nonfunctional properties are identified,

then the development process can proceed using the originally proposed architectural

specification.

1. Hierarchical Typed Hypergraphs

The work is based on Hierarchical Typed Hypergraph (HTH) theory. Hypergraph

theory is an extension of graph theory that permits more than two nodes (vertices) to an

edge. Typed hypergraphs are a restriction within general hypergraphs that stipulates

node and hyperedge types; hyperedges of a certain type may only connect nodes of

certain types. Hierarchical Typed Hypergraphs are typed hypergraphs that use

 46

hyperedges called complex hyperedges that are themselves hypergraphs. This permits a

recursive construction of a full HTH using a lesser HTH, hyperedges and nodes.

A HTH is characterized by the tuple , , , , ,V E att lab ext cts where:

V is a finite set of nodes (vertices) from the set of node types LV,

E is a finite set of hyperedges from the set of hyperedge types LE,

att is the attachment function to assign a sequence of nodes to a hyperedge,

lab is the labeling function for nodes and hyperedges,

ext describes a sequence of external nodes, and

cts is an assignment function that specifies that a hyperedge contains a HTH.

2. Unified Modeling Language for Real-Time

Grunske applies his theory to architectures specified using the Unified Modeling

Language for Real-Time (UML-RT). To do so, he derives the UML-RT metaclass

capsule from the HTH metaclass hypergraph, the UML-RT metaclass port (both end and

relay types) to the HTH metaclass node, and the UML-RT metaclass connector to the

HTH metaclass hyperedge. Figure 4 presents these relationships.

Figure 4. Metaclass Mapping of HTH and UML-RT Elements (From: [28])

3. Hierarchical Typed Hypergraphs Transformations

Hypergraph transformation is achieved by identifying sub-hypergraphs within

hypergraphs to enable hypergraph subtraction, hypergraph addition to construct an

expanded hypergraph, and hypergraph morphisms of attachments between nodes and

 47

hyperedges to complete the reconstruction. A HTH morphism (m) from one HTH (G) to

a functionally equivalent HTH (G’), uses pairs of mappings for nodes and hyperedges.

For instance, : ' ,V Em G G m m→ =< > where : 'Vm V V→ and : 'Em E E→ .

The graphical T-notation represented in Figure 5 is used to identify the operands

of the transformation as follows:

1. Ports (nodes) and connections (hyperedges) in the lower left corner of the
T are to be subtracted from the original HTH.

2. Ports and connections (and in the case of Figure 5, new additional
components) in the lower right corner of the T are to be added to the HTH.

3. Ports above the T are retained in the architectural transformation.

4. Morphisms of the attachments between ports and connections reconfigure
the resultant architecture to retain functional equivalence with the original
architecture.

The example presented in Figure 5 shows a single capsule on the left being

replaced with a subsystem that has three capsules7 on the right, that provide their output

to a voting capsule that chooses which of the messages to use based on a two-out-of-three

voting system.

Figure 5. Hypergraph Graphical T-Notation (From: [28])

7 Functionally equivalent to the original subtracted capsule in this example, but that need not be the

case.

 48

4. Evaluation of Quality Characteristics

Each element of an architectural specification is annotated with the relevant

aspects of the quality characteristics of interest and the capsules extended with analysis

models to facilitate the architectural evaluation. For example, to evaluate reliability or

safety, the elements will be annotated with failure data (safe and unsafe), and extended

with a fault tree analysis model.

Architectural transformations can then step through a pre-defined library of

possible transformations and be evaluated for performance against the nonfunctional

properties of concern.

B. COMPUTER-AIDED SOFTWARE EVOLUTION

Harn [29] extends the use of hypergraphs to a relational hypergraph model as a

means for formaly defining software evolution. This was done by relating software

evolution objects as inputs and outputs of the software steps that use and produce the

objects. A hypergraph capturing this relationship is defined in [29] as the tuple

, , ,N E I O where:

N is a set of nodes representing software evolution objects,

E is a set of hyperedges representing steps during software evolution,

I is the set of inputs for each hyperedge, and

O is the set of outputs from each hyperedge.

In a relational hypergraph, every input node on a hyperedge is either a primary, or

a secondary input to the hyperedge, and the output of the step is dependent on all input

nodes. Primary-input-driven hypergraphs relate different versions of the same software

evolution object, while secondary-input-driven hypergraphs relate different software

evolution objects. Figure 6 shows an example of a relational hypergraph where the

output software product (P2.2) is produced as a new (and merged) version of earlier

software products (P1.1, P12.2 and P22.2) and is also dependent on another software

product (R1.1).

 49

A primary-input-driven path addresses the evolution history of a software
evolution component based on the change from an old version to a new
version. A secondary-input-driven path addresses the evolution rationale
with a sequence of the software evolution components. Therefore, these
two structures form the relational hypergraph which determines not only
what to evolve but also how to evolve it. [29]

Figure 6. Relational Hypergraph (From: [29])

The functional notation using abstract algebra proposed in this thesis has the

following similarities to the relational hypergraph model presented in Harn’s dissertation:

1. The use of the function operator for software development activities
presented in Equation 5 is similar to the use of hyperedges as steps of
software evolution.

2. Software products being identified as the operands of development
activities is equivalent to nodes representing input software evolution
objects to software evolution steps.

3. Software product being produced as the outputs from development
activities equate nodes representing software evolution objects as outputs
from steps.

Harn’s work contrasts the work of this thesis, which is a technique for the analysis

of the suitability of previously developed software product for reuse, when the software

and the standards being applied are both evolving. As previously mentioned, this reuse

may be intentional or be regarded as salvage when the reuse of the software product is

not preplanned.

 50

The work in [29] covers the deliberate reuse of software evolution objects during

software development. Although Harn does not mention software assurance certification

as one of the steps of software evolution, the tool that was developed could be extended

to incorporate certification.

C. F/RF-111C AGM-142E/1760 INTEGRATION
The AGM-142E/1760 Integration as part of the F/RF-111C Block C4 SCS

upgrade was initially thought to be candidate for application of the technique proposed in

this thesis. Unfortunately, the software for the System Interface Processor (SIP) is not an

example of legacy safety-critical software that was having its certification basis upgraded

during modification.

AGM-142E/1760 Integration involves both the modification of software for

several processors8 already embedded in the F/RF-111C and incorporation of a SIP. The

SIP provides the necessary interface between the MC and AGM-142E loaded onto

aircraft Weapon Stations (WS) which was not possible through the existing SMP

interface to the WS. The certification basis for the existing subsystems was to remain a

tailored version of MIL-STD-498, while DO-178B (software level B) was proposed as

the certification basis for the SIP software. Figure 7 is a simplified block diagram

showing the data and control connections between system components post integration.

The software units within the SIP are the operating system, bus driver, discrete

input/output driver, analog to digital converter driver which were COTS products and the

OFP which was a completely new software development.

8 Mission Computer (MC), Stores Management Processor (SMP) Bus Sub-System Integration Unit,

and System Function Processor.

 51

Other
aircraft

systems

MC SMP
WS1

WS4

WS3

WS2

SIP

OS
Bus Driver

Discrete I/O Driver
ADC Driver

OFP

Figure 7. AGM-142E Integration – Simplified Block Diagram

Certifying COTS components as part of a DO-178B certified system is a related

but distinct problem from that of upgrading the certification basis for previously

developed software. Certification of COTS products is well recognized within DO-178B

and guidance to achieve the desired certification is included within the standard.

The possibility of applying abstract algebra to describe the development of the

OFP existed but was not explored. The reason for not investigating this project further

was that the OFP was a new development and hence no software products existed from a

previous development to which the proposed morphisms could be applied.

 52

THIS PAGE INTENTIONALLY LEFT BLANK

 53

V. CONCLUSION

A. KEY FINDINGS AND ACCOMPLISHMENTS
In this thesis we investigated the ADF practice of certifying modified legacy

software to DO-178B where the modification is developed in compliance with DO-178B,

but where the software was previously developed to some other standard. The ADF

practice is based on an extension of the FAA policy for certification of software to DO-

178B, which has been previously developed to an earlier version of the DO-178 standard,

and subsequently modified in such a manner as to be compliant with DO-178B.

The original scope of the research was to examine the objectives of DO-178B and

make a comparison with another software assurance or development standard to see how

much of the previous software development activities and products could possibly

comply with the certification requirements of DO-178B. If sufficient software products

and activities are found to be satisfactory, then some form of automation of any technique

to reuse the software products from a previous development would be necessary to make

such reuse practical. A necessary first step in achieving automation of any software

product reuse is to define a mathematical description of software evolution to enable the

mapping of applicable software activities and products between software standards.

Thus, deriving such a mathematical description of software development and evolution

became the primary focus of this work.

In this thesis, we introduced an algebraic model for software development as a

means to apply a systematic approach to define software development and evolution.

Our algebraic model introduces the application of abstract algebra to software

development by defining software products as the set of symbols, and software

development activities as the set of operations.

The abstract algebra model has a function notation that defines software

development activities. This function notation was developed for a single activity,

software development, and software evolution.

 54

() ()s s sB Cω →
Equation 5. Single Activity

() 1
1

m

s s
s

Bω
=

→ Α∪

Equation 7. Software Development

() ()
1 11

nn qp
n

t t t t
t ts

X B Bω ω
= ==

⎛ ⎞= ⎜ ⎟
⎝ ⎠

∪ ∪∪

Equation 8. Software Evolution

To assist in the efficient achievement of recertification against new or evolving

standards, we demonstrated the application of morphism to map software products for

reuse during software evolution. Three general functions that were presented are (i) the

identity function for software product that can be reused without additional effort, (ii) the

partial function for software product that is only partially reusable and (iii) the null

function for software product that cannot be reused to achieve recertification.

()t tφ α α→

Equation 9. Identity Morphism

()t tφ α δα→

Equation 10. Partial Morphism

()tφ α →∅

Equation 11. Null Morphism

Whilst the model presented in this thesis is yet to be completed, and specific

morphisms for mapping software products are still to be identified, the approach has been

well received and shows promise of satisfying the basis for automation of recertification.

 55

B. CONCLUDING REMARKS

A comment raised towards the end of this work was in essence a question of

“does it really matter once a system is in service?” Mapping prior activities and software

products to a new software assurance standard does not, on its own, make a safety-critical

system any safer: to make software-intensive systems safer, the code must be improved.

This is a valid assertion but the reply to this point is that software safety assurance is an

attempt to obtain a measure of the confidence in the safety aspects of a software-intensive

system.

Establishing the current level of software safety assurance based on existing

available evidence permits program managers to make justifiable decisions concerning

the continued operation, or otherwise, of aircraft with or without software upgrades. The

first step in the decision-making process is to determine the current level of software

safety assurance. If the finding gives the certification authority sufficient grounds for

claiming an acceptable level of system safety has been achieved, then the system can

continue to be operated without any further expenditure or effort. This prevents

unwarranted expenditure of resources on software evolution that is not necessary from

the software safety certification perspective. If the finding does not satisfy the

certification authority, then the following options can be explored to reach a decision.

The first option is always do nothing and continue to operate the system as-is. This

sounds unpalatable when talking about safety, but is none-the-less one of the options. A

decision to take this option can either be an educated or uneducated one; determining the

current level of software safety assurance gives the decision maker the opportunity to

make an educated decision. The second option is to modify the software within the

system to raise the software safety assurance level. The third option is to discontinue

operation of the existing system and replace it. These last two choices are also better

made with a clear understanding of a system’s existing level of software assurance. We

hope that the technique proposed in this thesis will be effective for obtaining evidence

from the existing software products, upon which an educated choice about continued

system operation or evolution can be made.

 56

C. FUTURE WORK

1. Determine the Morphisms Required for Activities and Products

The immediate work to be continued is the identification of a complete set of

morphisms needed to map the requirements of a legacy standard such as MIL-STD-498

to the objectives of the desired standard DO-178B. Completeness of the set of

morphisms will be achieved when the requirements of the desired standard that can be

achieved with the legacy software products are identified by appropriate morphisms.

2. Case Studies
A candidate for investigation and application of the proposed technique is the

AF/A-18 software development being undertaken by the RAAF at the Tactical Fighter

Weapon System Support Unit. The MC and SMP OFP for the AF/A-18 is an active area

of the evolution of legacy software which was originally developed to MIL-STD-498.

The aircraft will be subject to continued software maintenance and modernization and has

sufficient remaining useful life to warrant the investigation into upgrading the software

certification basis.

Other possibilities within the ADF might be the RAAF F/RF-111C MC and SMP

software development which currently have a MIL-STD-498 certification basis; or

software support for the Royal Australian Navy’s Super Seasprite helicopters, FFG

Frigates or Collins class submarines.

3. Automation
We feel that the model and notation for the representation of software

development, evolution and recognition of prior software product presented in this thesis

is amenable to automation through the development of extensions to existing software

development tools.

4. Different Combinations of Other Standards
The original focus of this thesis was a comparative analysis of the DO-178B

objectives and MIL-STD-498 requirements to determine the amount of MIL-STD-498

compliant software product that would likely be acceptable for certification of software to

DO-178B.

 57

5. Application to Other Domains and Dimensions

The methodology presented in this thesis can be applied to other domains that

have safety-critical concerns. These include rail system automation, nuclear power plant

control and medical devices.

Another dimension of high assurance software that might benefit from the

application of this technique is software security certification.

It is possible that the approach introduced here may also be applied to other

engineering disciplines that are concerned with recertification.

6. Cost-Benefit Analysis With Respect to Software/System Age
Achieving certification to a new standard is a considerable effort with significant

costs. It is important therefore, to obtain an acceptable ROI. One could explore whether

the cost of recertification would diminish as a system gets closer to the end of its service

life. Cost-benefit analysis of recertification of a system as a function of the remaining

useful life of the system is another possibility for future work.

 58

THIS PAGE INTENTIONALLY LEFT BLANK

 59

APPENDIX: EXTRACTS FROM SELECTED STANDARDS

A. EXTRACTS FROM RTCA DO-178B

12.0 ADDITIONAL CONSIDERATIONS

12.1 Use of Previously Developed Software

The guidelines of this subsection discuss the issues associated with the use
of previously developed software, including assessment of modifications,
the effect of changing an aircraft installation, application environment, or
development environment, upgrading a development baseline, and SCM
and SQA considerations. The intention to use previously developed
software is stated in the Plan for Software Aspects of Certification.

12.1.1 Modifications to Previously Developed Software

This guidance discusses modifications to previously developed software
where the outputs of the previous software life cycle processes comply
with this document. Modification may result from requirement changes,
the detection of errors, and/or software enhancements. Analysis activities
for proposed modifications include:

a. The revised outputs of the system safety assessment process should be
reviewed considering the proposed modifications.

b. If the software level is revised, the guidelines of paragraph 12.1.4 should
be considered.

c. But the impact of the software requirements changes and the impact of
software architecture changes should be analyzed, including the
consequences of software requirement changes upon other requirements
and coupling between several software components that may result in
reverification effort involving more than the modified area.

d. The area affected by change should be determined. This may be done by
data flow analysis, control flow analysis, timing analysis and traceability
analysis.

e. Areas affected by the change should be reverified considering the
guidelines of section 6.

12.1.4 Upgrading a Development Baseline

Guidelines follow for software whose software life cycle data from a
previous application are determined to be inadequate or do not satisfy the
objectives of this document, due to the safety objectives associated with a

 60

new application. These guidelines are intended to aid in the acceptance
of:

• Commercial off-the-shelf software.
• Airborne software developed to other guidelines.
• Airborne software developed prior to the existence of this

document.
• Software previously developed to this document at a lower

software level
Guidance for upgrading a development baseline includes:
a. The objectives of this document should be satisfied while taking advantage

of software lifecycle data of the previous development that satisfy the
objectives for the new application.

b. Software aspects of certification should be based on the failure conditions
and software level(s) as determined by the system safety assessment
process. Comparison to failure conditions of the previous application will
determine areas which may need to be upgraded.

c. Software life cycle data from a previous development should be evaluated
to ensure that the software verification process objectives of the software
level are satisfied for the new application.

d. Reverse engineering may be used to regenerate software life cycle data
that is inadequate or missing in satisfying the objectives of this document.
In addition to producing the software product, additional activities may
need to be performed to satisfy the software verification process
objectives.

e. If use of product service history is planned to satisfy the objectives of this
document in upgrading a development baseline, the guidelines of
paragraph 12.3.5 should be considered.

f. The applicant should specify the strategy for accomplishing compliance
with this document in the Plan for Software Aspects of Certification.

12.1.5 Software Configuration Management Considerations

If previously developed software is used, the software configuration
management process for the new application should include, in addition to
the guidelines of section 7:

a. Traceability from the software product and software life cycle data of the
previous application to the new application.

b. Change control that enables problem reporting, problem resolution, and
tracking of changes to software components used in more than one
application.

 61

12.1.6 Software Quality Assurance Considerations

If previously developed software is used, the software quality assurance
process for the new application should include, in addition to the
guidelines of section 8:

a. Assurance that the software components satisfy or exceed the software life
cycle criteria of the software level for the new application.

b. Assurance that changes to the software life cycle processes are stated in
the software plans.

12.3.5 Product Service History

If equivalent safety for the software can be demonstrated by the use of the
software’s product service history, some certification credit may be
granted. The acceptability of this method is dependent on:

• Configuration management of the software.
• Effectiveness of problems reporting activity.
• Stability and maturity of the software.
• Relevance of product service history environment.
• Actual error rates and product service history.
• Impact of modifications.

Guidance for the use of product service history includes:
a. The applicant should show that the software and associated evidence used

to comply with system safety objectives have been under configuration
management throughout the product service history.

b. The applicant should show that the problem reporting during the product
service history provides assurance that representative data is available and
that in-service problems were reported and recorded, and are retrievable.

c. Configuration changes during the product service history should be
identified and the effect analyzed to confirm the stability and maturity of
the software. Uncontrolled changes to the Executable Object Code during
the product service history may invalidate the use of product service
history.

d. The intended software usage should be analyzed to show the relevance of
the product service history.

e. If the operating environments of the existing and proposed applications
differ, additional software verification should confirm compliance with the
system safety objectives.

 62

f. The analysis of configuration changes and product service history
environment may require the use of software requirements and designed
data to confirm the applicability of the product service history
environment.

g. If the software is a subset of the software that was active during the service
period, Then analysis should confirm the equivalency of the new
environment with the previous environment, and determine those software
components that were not executed during normal operation

 Note: Additional verification may be needed to confirm compliance with
the system safety objectives for those components.

h. The problem report history should be analyzed to determine how safety-
related problems occurred and which problems were corrected.

i. Those problems that are indicative of an inadequate process, such as
design or code errors, should be indicated separately from those whose
cause are outside the scope of this document, such as hardware or system
requirements errors.

j. The data described above and these items should be specified in the Plan
for Software Aspects of Certification:

(1) Analysis of the relevance of the product service history
environment.

(2) Length of service period and rationale for calculating the
number of hours in the service, including factors such as
operational modes, the number of independently operating
copies in the installation and in service, and the definition of
“ normal operation” and “ normal operation time”.

(3) Definition of what was counted as an error and rationale for
that definition.

(4) Proposed acceptable error rates and rationale for the product
service history period in relation to the system safety and
proposed error rates.

k. If the error rate is greater than that identified in the plan, these errors
should be analyzed and the analyses reviewed with the certification
authority.

 63

ANNEX A (of DO-178B)

PROCESS OBJECTIVES AND OUTPUTS BY SOFTWARE LEVEL

Objective Applic-
ability by
S/W Level

Output CC by
S/W Level

 Description Ref. A B C D Description Ref. A B C D
Software Planning Process

1 Software development and
integral processes activities
are defined.

4.1a
4.3

○ ○ ○ ○

PSAC
SDP
SVP
SCMP
SQAP

11.1
11.2
11.3
11.4
11.5

1
1
1
1
1

1
1
1
1
1

1
2
2
2
2

1
2
2
2
2

2 Transition criteria, inter-
relationships and sequencing
among processes are
defined.

4.1b
4.3 ○ ○ ○

3 Software life cycle
environment is defined.

4.1c ○ ○ ○

4 Additional considerations
are addressed.

4.1d ○ ○ ○ ○

5 Software development
standards are defined.

4.1e
○ ○ ○

S/W Requirements Stds
S/W Design Stds
S/W Code Stds

11.2
11.3
11.4

1
1
1

1
1
1

2
2
2

6 Software plans comply with
RTCA DO-178B.

4.1f
4.6 ○ ○ ○ SQA Records

S/W Verification Results
11.19
11.14

2
2

2
2

2
2

7 Software plans are
coordinated.

4.1g
4.6 ○ ○ ○ SQA Records

S/W Verification Results
11.19
11.14

2
2

2
2

2
2

Software Development Processes

8 High-level requirements are
developed.

5.1.1a ○ ○ ○ ○ S/W Requirements Data 11.9 1 1 1 1

9 Derived high-level
requirements are defined.

5.1.1b ○ ○ ○ ○ S/W Requirements Data 11.9 1 1 1 1

10 Software architecture is
developed.

5.2.1a ○ ○ ○ ○ Design Description 11.10 1 1 2 2

11 Low-level requirements are
developed.

5.2.1a ○ ○ ○ ○ Design Description 11.10 1 1 2 2

12 Derived low-level
requirements are developed.

5.2.1b ○ ○ ○ ○ Design Description 11.10 1 1 2 2

 64

Objective Applic-
ability by
S/W Level

Output CC by
S/W Level

 Description Ref. A B C D Description Ref. A B C D
13 Source Code is developed. 5.3.1a ○ ○ ○ ○ Source Code 11.11 1 1 1 1

14 Executable Object Code is
produced and integrated in
the target computer.

5.4.1a ○ ○ ○ ○ Executable Object Code 11.12 1 1 1 1

Verification of Outputs of Software Requirements Process

15 Software high-level
requirements comply with
system requirements.

6.3.1a ● ● ○ ○ S/W Verification Results 11.14 2 2 2 2

16 High-level requirements are
accurate and consistent.

6.3.1b ● ● ○ ○ S/W Verification Results 11.14 2 2 2 2

17 High-level requirements are
compatible with target
computer.

6.3.1c ○ ○ S/W Verification Results 11.14 2 2

18 High-level requirements of
verifiable.

6.3.1d ○ ○ ○ S/W Verification Results 11.14 2 2 2

19 High-level requirements
conform to standards.

6.3.1e ○ ○ ○ S/W Verification Results 11.14 2 2 2

20 High-level requirements are
traceable to system
requirements.

6.3.1f ○ ○ ○ ○ S/W Verification Results 11.14 2 2 2 2

21 Algorithms are accurate. 6.3.1g ● ● ○ S/W Verification Results 11.14 2 2 2

Verification of Outputs of Software Design Process

22 Low-level requirements
comply with high-level
requirements.

6.3.2a ● ● ○ S/W Verification Results 11.14 2 2 2

23 Lower-level requirements
are accurate and consistent.

6.3.2b ● ● ○ S/W Verification Results 11.14 2 2 2

24 Low-level requirements are
compatible with target
computer

6.3.2c ○ ○ S/W Verification Results 11.14 2 2

25 Level-level requirements are
verifiable.

6.3.2d ○ ○ S/W Verification Results 11.14 2 2

26 Level-level requirements
conform to standards.

6.3.2e ○ ○ ○ S/W Verification Results 11.14 2 2 2

 65

Objective Applic-
ability by
S/W Level

Output CC by
S/W Level

 Description Ref. A B C D Description Ref. A B C D
27 Level-level requirements are

traceable to high-level
requirements.

6.3.2f ○ ○ ○ S/W Verification Results 11.14 2 2 2

28 Algorithms are accurate. 6.3.2g ● ● ○ S/W Verification Results 11.14 2 2 2

29 Software architecture is
compatible with high-level
requirements.

6.3.3a ● ○ ○ S/W Verification Results 11.14 2 2 2

30 Software architecture is
consistent.

6.3.3b ● ○ ○ S/W Verification Results 11.14 2 2 2

31 Software architecture is
compatible with target
computer.

6.3.3c ○ ○ S/W Verification Results 11.14 2 2

32 Software architecture is
verifiable.

6.3.3d ○ ○ S/W Verification Results 11.14 2 2

33 Software architecture
conforms to standards.

6.3.3e ○ ○ ○ S/W Verification Results 11.14 2 2 2

34 Software partitioning
integrity is confirmed.

6.3.3f ● ○ ○ ○ S/W Verification Results 11.14 2 2 2 2

Verification of Outputs of Software Coding & Integration Processes

35 Source Code complies with
low-level requirements.

6.3.4a ● ● ○ S/W Verification Results 11.14 2 2 2

36 Source Code complies with
software architecture.

6.3.4b ● ○ ○ S/W Verification Results 11.14 2 2 2

37 Source Code is verifiable. 6.3.4c ○ ○ S/W Verification Results 11.14 2 2

38 Source Code conforms to
standards.

6.3.4d ○ ○ ○ S/W Verification Results 11.14 2 2 2

39 Source Code is traceable to
low-level requirements.

6.3.4e ○ ○ ○ S/W Verification Results 11.14 2 2 2

40 Source Code is accurate and
consistent.

6.3.4f ● ○ ○ S/W Verification Results 11.14 2 2 2

41 Output of integration
process is complete and
correct.

6.3.5 ○ ○ ○ S/W Verification Results 11.14 2 2 2

 66

Objective Applic-
ability by
S/W Level

Output CC by
S/W Level

 Description Ref. A B C D Description Ref. A B C D
Testing of Outputs of Integration Process

42 Executable Object Code
complies with high-level
requirements.

6.4.2.1
6.4.3

○ ○ ○ ○ S/W Verification Cases and
Procedures
S/W Verification Results

11.13

11.14

1

2

1

2

2

2

2

2

43 Executable Object Code is
robust with high-level
requirements.

6.4.2.2
6.4.3

○ ○ ○ ○ S/W Verification Cases and
Procedures
S/W Verification Results

11.13

11.14

1

2

1

2

2

2

2

2

44 Executable Object Code
complies with low-level
requirements.

6.4.2.1
6.4.3

● ● ○ S/W Verification Cases and
Procedures
S/W Verification Results

11.13

11.14

1

2

1

2

2

2

45 Executable Object Code is
robust with low-level
requirements.

6.4.2.2
6.4.3

● ○ ○ S/W Verification Cases and
Procedures
S/W Verification Results

11.13

11.14

1

2

1

2

2

2

46 Executable Object Code is
compatible with target
computer.

6.4.3a ○ ○ ○ ○ S/W Verification Cases and
Procedures
S/W Verification Results

11.13

11.14

1

2

1

2

2

2

2

2

Verification of Verification Process Results

47 Test procedures are correct. 6.3.6b ● ○ ○ S/W Verification Results 11.14 2 2 2

48 Test results are correct and
discrepancies explained.

6.3.6c ● ○ ○ S/W Verification Results 11.14 2 2 2

49 Test coverage of high-level
requirements is achieved.

6.4.4.1 ● ○ ○ ○ S/W Verification Results 11.14 2 2 2 2

50 Test coverage of low-level
requirements is achieved.

6.4.4.1 ● ○ ○ S/W Verification Results 11.14 2 2 2

51 Test coverage of software
structure (modified
condition/decision) is
achieved.

6.4.4.2 ● S/W Verification Results 11.14 2

52 Test coverage of software
structure (decision
coverage) is achieved.

6.4.4.2a
6.4.4.2b

● ● S/W Verification Results 11.14 2 2

53 Test coverage of software
structure (statement
coverage) is achieved.

6.4.4.2a
6.4.4.2b

● ● ○ S/W Verification Results 11.14 2 2 2

 67

Objective Applic-
ability by
S/W Level

Output CC by
S/W Level

 Description Ref. A B C D Description Ref. A B C D
54 Test coverage of software

structure (data coupling and
control coupling) is
achieved.

6.4.4.2c ● ● ○ S/W Verification Results 11.14 2 2 2

Software Configuration Management Process

55 Configuration items are
identified.

7.2.1 ○ ○ ○ ○ S/W Configuration
Management Records

11.18 2 2 2 2

56 Baselines and trace ability
are established.

7.2.2 ○ ○ ○ ○ S/W Configuration Index
S/W Configuration
Management Records

11.16
11.18

1
2

1
2

1
2

1
2

57 Problem reporting, change
control, change review, and
configuration status
accounting and established.

7.2.3
7.2.4
7.2.5
7.2.6

○ ○ ○ ○ Problem Reports
S/W Configuration
Management Records

11.17
11.18

2
2

2
2

2
2

2
2

58 Archive, retrieval, and
release are established.

7.2.7 ○ ○ ○ ○ S/W Configuration
Management Records

11.18 2 2 2 2

59 Software load control is
established.

7.2.8 ○ ○ ○ ○ S/W Configuration
Management Records

11.18 2 2 2 2

60 Software life cycle
environment control is
established.

7.2.9 ○ ○ ○ ○ S/W Life Cycle
Environment Configuration
Index
S/W Configuration
Management Records

11.15

11.18

1

2

1

2

1

2

2

2

Software Quality Assurance Process

61 Assurance is obtained that
software development and
integral processes comply
with approved software
plans and standards.

8.1a ● ● ● ● S/W Quality Assurance
Records

11.19 2 2 2 2

62 Assurance is obtained that
transition criteria for the
software lifecycle processes
are satisfied.

8.1b ● ● S/W Quality Assurance
Records

11.19 2 2

63 Software conformity review
is conducted.

8.1c
8.3

● ● ● ● S/W Quality Assurance
Records

11.19 2 2 2 2

 68

Objective Applic-
ability by
S/W Level

Output CC by
S/W Level

 Description Ref. A B C D Description Ref. A B C D
Certification Liaison Process

64 Communication and
understanding between the
applicant and the
certification authority is
established.

9.0 ○ ○ ○ ○ PSAC 11.1 1 1 1 1

65 The means of compliance is
proposed and agreement
with the Plan for Software
Aspects of Certification is
obtained.

9.1 ○ ○ ○ ○ PSAC 11.1 1 1 1 1

66 Compliance substantiation is
provided

9.2 ○ ○ ○ ○ Software Accomplishment
Summary
Software Configuration
Index

11.20

11.16

1 1 1 1

Legend

○ The objective should be satisfied.

● The objective should be satisfied with independence.

Blank Satisfaction of objective is at applicant’s discretion.

1 Data satisfies the objectives of Control Category 1 (CC1).

2 Data satisfies the objectives of Control Category 2 (CC2).

Table 4. Objectives, Activities, Outputs and Data Control Categories
(After: 15, Tables A-1 through A-10)

B. EXTRACTS FROM MIL-STD-498
4.2.2 Standards for software products. The developer shall develop and
apply standards for representing requirements, design, code, test cases, test
procedures, and test results. These standards shall be described in, or
referenced from, the software development plan.

5.16 Software quality assurance. The developer shall perform software
quality assurance in accordance with the following requirements.

Note: If a system or CSCI is developed in multiple builds, the activities
and software products of each build should be evaluated in the context of
the objectives established for that build. An activity or software product
that meets those objectives can be considered satisfactory even though it is

 69

missing aspects designated for later builds. Planning for software quality
assurance is included in software development planning (see 5.1.1).

5.16.1 Software quality assurance evaluations. The developer shall
conduct on-going evaluations of software development activities and the
resulting software products to:

a. Assure that each activity required by the contract or described in the
software development plan is being performed in accordance with the
contract and with the software development plan.

b. Assure that each software product required by this standard or by other
contract provisions exists and has undergone software product evaluations,
testing, and corrective action as required by this standard and by other
contract provisions.

5.16.2 Software quality assurance records. The developer shall prepare
and maintain records of each software quality assurance activity. These
records shall be maintained for the life of the contract. Problems in
software products under project-level or higher configuration control and
problems in activities required by the contract or described in the software
development plan shall be handled as described in 5.17 (Corrective
action).

5.16.3 Independence in software quality assurance. The persons
responsible for conducting software quality assurance evaluations shall not
be the persons who developed the software product, performed the
activity, or are responsible for the software product or activity. This does
not preclude such persons from taking part in these evaluations. The
persons responsible for assuring compliance with the contract shall have
the resources, responsibility, authority, and organizational freedom to
permit objective software quality assurance evaluations and to initiate and
verify corrective actions.

C. EXTRACT FROM DATA ITEM DESCRIPTION DI-IPSC-81433
(SOFTWARE REQUIREMENTS SPECIFICATION)
3.7 Safety requirements. This paragraph shall specify the CSCI
requirements, if any, concerned with preventing or minimizing unintended
hazards to personnel, property, and the physical environment. Examples
include safeguards the CSCI must provide to prevent inadvertent actions
(such as accidentally issuing an "auto pilot off" command) and non-
actions (such as failure to issue an intended "auto pilot off" command).
This paragraph shall include the CSCI requirements, if any, regarding
nuclear components of the system, including, as applicable, prevention of
inadvertent detonation and compliance with nuclear safety rules.

 70

THIS PAGE INTENTIONALLY LEFT BLANK

 71

LIST OF REFERENCES

1 Seacord, R. C., Plakosh, D., and Lewis, G. A., Modernizing Legacy Systems:

Software Technologies, Engineering Processes, and Business Practices, Addison-
Wesley, 2003.

2 Leveson, N. G., Safeware: System Safety and Computers, Addison-Wesley, 1995.

3 Boeing Integrated Defense Systems, F/A-18 Hornet Milestone,
[http://www.boeing.com/defense-space/military/fa18/fa18_milestones.htm]
February 2006.

4 Boeing Integrated Defense Systems, F/A-18 Background Info,
[http://www.boeing.com/defense-space/military/fa18/fa18_4back.htm] February
2006.

5 Jane’s, All the Worlds Aircraft, [http://www.janes.com] February 2006.

6 Jane’s, Aircraft Upgrades, [http://www.janes.com] February 2006.

7 Defence Materiel Organisation, Project Air 5376 – F/A-18 Hornet Upgrade,
[http://www.defence.gov.au/dmo/asd/air5376/air5376.cfm] February 2006.

8 Finnish Air Force, The Hornet’s Ten Years in Service,
[http://www.ilmavoimat.fi/index_en.php?id=651] February 2006.

9 Canada National Defence, Canada’s Air Force, Aircraft: CF-18 Hornet – Future
Plans, [http://www.airforce.forces.gc.ca/equip/cf-18/future_e.asp] February 2006.

10 Department of Defence, Media Invitation,
[http://www.defence.gov.au/media/DepartmentalTpl.cfm?CurrentId=234]
February 2006.

11 Boeing Commercial Airplanes, 747,
[http://www.boeing.com/commercial/747family/index.html] February 2006.

12 Bowers, P., The F/A-18 Advanced Weapons Lab Successfully Delivers a $120-
Million Software Block Upgrade, CrossTalk, pp. 10-11, January 2002.

13 Storey, N., Safety-Critical Computer Systems, Pearson Prentice Hall, 1996.

14 DAIRENG-DGTA. DI(AF) AAP 7001.054: Airworthiness Design Requirements
Manual. S2Ch7P19. Defence Air Publications Agency. 23 February 2004.

 72

15 Radio Technical Commission for Aeronautics, DO-178B, Software

Considerations in Airborne Systems and Equipment Certification, 1 December
1992.

16 Department of Defense, MIL-STD-882D, Standard Practice for System Safety, 10
February 2000.

17 Roland, H. E. and Moriarty, B., System Safety Engineering and Management,
John Wiley & Sons, 1990.

18 Institute of Electrical and Electronics Engineers, Standard 610.12-1990, IEEE
Standard Glossary of Software Engineering Terminology, 1990.

19 National Aeronautics and Space Administration, Standard NASA-STD-8739.8,
Software Assurance Standard, 28 July 2004.

20 Wiktionary Contributors, Assurance [http://en.wiktionary.org/wiki/assurance].
February 2006.

21 Department of Defense, MIL-STD-882C, System Safety Program Requirements,
19 January 1993.

22 Society of Automotive Engineers, ARP4754, Certification Considerations for
Highly-Integrated or Complex Aircraft Systems, 12 January 1996.

23 Johnson, L. A., DO-178B, Software Considerations in Airborne Systems and
Equipment Certification, CrossTalk, web edition, October 1998.

24 Kazman, R., Woods, S.G., and Carriere, S.J., Requirements for Integrating
Software Architecture and Reengineering Models: CORUM II, Proceedings of the
Fifth Working Conference on Reverse Engineering, pp. 154-163, 1998.

25 Swedish Defence Materiel Administration. H ProgSäkE: Handbook for Software
in Safety Critical Applications. FMV, Sweden. 2001.

26 Department of Defense, MIL-HDBK-514, Operational Safety, Suitability, &
Effectiveness for the Aeronautical Enterprise, 28 March 2003.

27 Institute of Electrical and Electronics Engineers, Standard 1028-1997, IEEE
Standard for Software Reviews, 1997.

28 Yang, H.. Advances in UML and XML-Based Software Evolution, Idea Group
Inc., 2005.

29 Harn, M.-C., Computer-Aided Software Evolution Based on Inferred
Dependencies, Ph.D. Dissertation, Naval Postgraduate School, Monterey,
California, December 1999.

 73

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Professor Bret Michael
Naval Postgraduate School
Monterey, California

4. Dr. Jeff Voas
SAIC, Inc.
Arlington, Virginia

5. Professor George Dinolt

Naval Postgraduate School
Monterey, California

6. SQNLDR Benjamin Musial
Royal Australian Air Force
RAAF Williams, Laverton, Australia

7. Professor Duminda Wijesekera

George Mason University
Fairfax, Virginia

8. Dr. John Harauz

Jonic Systems Engineering, Inc.
Willowdale, Ontario, Canada

9. FLTLT Desmond Meacham

Royal Australian Air Force
RAAF Williams, Laverton, Australia

